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In the majority of molecular optimization tasks, predictive machine learning (ML) models are limited due to the 

unavailability and cost of generating big experimental datasets on the specific task. To circumvent this limitation, ML 

models are trained on big theoretical datasets or experimental indicators of molecular suitability that are either publicly 

available or inexpensive to acquire. These approaches produce a set of candidate molecules which have to be ranked using 

limited experimental data or expert knowledge. Under the assumption that structure is related to functionality, here we 

use a molecular fragment-based graphical autoencoder to generate unique structural fingerprints to efficiently search 

through the candidate set. We demonstrate that fragment-based graphical autoencoding reduces the error in predicting 

physical characteristics such as the solubility and partition coefficient in the small data regime compared to other 

extended circular fingerprints and string based approaches. We further demonstrate that this approach is capable of 

providing insight into real world molecular optimization problems, such as searching for stabilization additives in organic 

semiconductors by accurately predicting 92% of test molecules given 69 training examples. This task is a model example of 

black box molecular optimization as there is minimal theoretical and experimental knowledge to accurately predict the 

suitability of the additives. 

Introduction 

A significant attribute of organic molecules is their almost 

infinite chemical structural variations which exhibit a range of 

tunable properties
1,2

. The challenge of molecular optimization 

is to efficiently find the appropriate molecular structure for a 

particular task. In practice, while certain attributes can be 

simulated, this is not true for all tasks due to incomplete 

theory or intractable computation. In these cases, molecular 

optimization is driven by expensive and time-consuming 

empirical measurements and not by analytical predictions. A 

promising route to improve the searching efficiency of 

molecular structures is to augment computational and 

experimental discovery of novel materials using machine 

learning techniques.  

 

Machine learning (ML) provides a route to efficiently obtain a 

mapping from the features of  experiments to their outcomes 

through statistical techniques. ML algorithms have already 

been used to predict valid organic molecules for both 

pharmaceutical and organic electronics applications. These 

approaches focus on predicting valid molecules based on big 

data from either known databases or relevant theoretical 

calculations. For example, ML techniques are applied to big 

theoretical and experimental databases to predict metrics 

such as drug likeliness and partition coefficient, which are 

strong theoretical indicators to pre-screen the drugs
3–5

. In 

organic electronics, machine learning has been used to 

efficiently produce theoretical indicators for datasets which 

are too large to be exhaustively screened with quantum 

simulations
6,7

. In both of these examples, the ML is not 

learning from large experimental datasets but from large 

theoretical databases generated by accurate theoretical 

representations. However, very often such theoretical models 

do not exist and many of the existing ones are incomplete, as 

they generate indicators of valid molecular structures but are 

not able to efficiently model the complete material system. 

Assuming the theoretical models are valid, they can pre-screen 

many molecular structures; however, the remaining set of 

molecules, the candidate set (Figure 1), will still need to be 

screened, based on empirical data or expert knowledge.  

 

https://github.com/OE-FET/FraGVAE
https://github.com/OE-FET/FraGVAE
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A clear theoretical gap in drug discovery is whether a drug has 

any side effects, as accurate simulations of the complete 

biological system are intractable. Similarly, in organic 

electronics, predicting the morphology of organic 

semiconductors purely on chemical structure is highly prone to 

error. Unfortunately, unlike other areas of applied machine 

learning without theoretical models, such as image 

recognition, natural language processing and finance, 

experimental data for molecular discovery is limited and 

extremely costly to acquire. As most molecular optimization 

problems do not have a valid and accurate theoretical model 

for all relevant aspects, this small data regime is the bottleneck 

of most molecular discovery applications and this is why 

molecular optimization is an extremely difficult problem. To 

support this effort, our objective is to provide an intuitive 

structural latent space based on molecular fragments, which 

reduces the amount of information required to find 

appropriate molecular structures in the candidate set. 

Fragments are subgraphs of molecular structures commonly 

used as basis functions in organic chemistry.  

 

In machine learning, efficient encodings of data can be 

achieved through a process known as autoencoding, an 

unsupervised learning algorithm. An autoencoder consists of a 

neural network that learns how to copy the input to its output, 

however, the number of neurons representing the input at one 

of the layers in the pipeline is reduced, resulting in a forced  

dimensionality reduction, Figure 1 
8
. This technique is used in 

image and natural language processing to generate 

compressed representations of images and texts
9
. Here we 

train a graphical autoencoder to generate an efficient latent 

space representation of our candidate molecules in relation to 

other molecules in the set. This approach differs from 

traditional chemical techniques, which attempt to make a 

fingerprint system for all possible molecular structures instead 

of a specific set. Assuming a molecular structure is not 

randomly related to functionality, the design of a smooth 

structurally sorted space should also permit a smooth mapping 

of descriptors onto properties. This reduces the Nyquist 

criterion resulting in less information required to accurately 

model properties. Hence, a sorted space would increase the 

search efficiency of any black box optimization technique
10

.  

 

In summary, the primary hypothesis in this work is that 

graphically autoencoding candidate molecular graphs 

produces efficient fingerprints of candidate molecules in the 

small data regime. As this structure-focused approach will not 

be able to capture all known qualitative theoretical or 

experimental knowledge, this approach should be used as an 

unbiased quantitative structure activity relationship method to 

aid a collaborative decision-making process. This approach 

would help to augment the screening of molecular structures 

by providing an unbiased plausibility of subsequent molecules 

given the small amount of established data.  

 

To validate our primary hypothesis that graphical autoencoded 

representations are appropriate for molecular fingerprints in 

the small data regime, we compare the predictions of our 

graph-based method to standard chemical and string-based 

molecular fingerprints in both theoretical and experimental 

datasets. Large theoretical datasets are used to generate 

robust statistics of similar small datasets under the assumption 

Figure 1: Pipeline of clustering molecular candidates based on structures using a molecular autoencoder. The graphical encoder reduces the dimensionality of 

a graph representation of a molecule to a specific point in a continuous latent space. The decoder samples the same point in the latent space to rebuild the 

same graph. By training the encoder and decoder to learn how to decompose and reconstruct molecules in a reduced dimensional space, the algorithm learns 

how to efficiently represent molecular graphs relative to other molecular graphs in the candidate set. As molecules with similar fragments are located closer in 

the latent space and assuming structure is related to functionality, minimal data is required to label regions of the molecular space (green and blue) in order to 

predict unknown regions (tan). 
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that theoretical databases are an accurate representation of 

practical experiments. To demonstrate graphical autoencoding 

in small experimental datasets, we used this technique to 

search for molecular additives in organic semiconductors. In 

organic electronics the major limiting factor for device 

application is that solution processed devices have poor 

stability. However, recent work has demonstrated that the 

formation of traps responsible for device degradation can be 

stabilized using both liquid and solid additives. As the specific 

mechanism is unclear, here we use ML to augment the search 

for new molecular additives.  

 

Fragment Graphical Autoencoding 

An established approach to autoencode molecular graphs is to 

avoid graphs altogether and convert the graph into a one 

dimensional representation, such as a string based on SMILES 

(simplified molecular-input line-entry system) or trees 
4,5

. A 

known problem with the string approach is that small 

variations in the molecular structure can result in large 

modifications of the string
5
. Tree structures are more robust 

but the encoding is still dependent on an arbitrary trace and 

starting node
5
. This encoding scheme results in multiple 

arbitrary encodings for a given molecular structure, which 

could result in a more complicated molecular space, 

undesirable for small datasets, which we avoid by encoding 

graphically.  

 

Interest in the encoding of molecular graphs has exploded, 

resulting in a class of neural network architectures known as 

Message Passing Neural Networks (MPNNs), capable of 

generating unique encodings of molecular structure by 

exploiting Banach's fixed point theorem
11

. The challenge of 

applying these techniques to small data set applications is to 

ensure that the model does not overfit, as the unique 

encoding of larger structures requires deep MPNN. For 

example, to encode a fragment with a maximum degree of 3, 

one requires 3 graphic message passing iterations and 

additional layers to relate the output of the MPNN to the 

dependent variable. As each layer has hundreds of parameters 

this process is prone to over fitting
7
.  

 

To train a deep MPNN on a small dataset, here we exploit a 

major challenge of graphical autoencoders, direct 

autoencoding is intractable for reasonably sized graphs
12

. To 

make the problem tractable, a common approach is to 

perform a sequence of discrete decisions to reconstruct an 

undirected graph trace. In this case the next graph in the 

sequence is dependent only on the current state of the graph 

and not the history of the graph trace. This results in orders of 

magnitudes more training examples for the MPNN encoder for 

each molecular graph in the training set.  

 

What is unique in this work is that the graph is reconstructed 

fragment by fragment; hence, this procedure is called 

Fragment Gaphical Variational AutoEncoding (FraGVAE). The 

smallest fragment is an extended connectivity fingerprint 

(ECFP) with a radius of 1, which is a node atom connected to 

neighboring nodes
13

. As these fragments are small, they can be 

directly decoded from fragment latent space (  ), unlike 

graphs larger than 6 nodes
14

. A property of these fragments is 

that each of them must be included once and only once when 

rebuilding the final structure to allow sampling without 

replacement. To reconstruct the large graph, here we 

randomly select a nucleating fragment with a number of 

dangling bonds (cyan) that can accept fragments to expand the 

structure. In an iterative approach, the correct neighboring 

fragment from the fragment bag, based on larger radius 

fragments indicative of the connectivity of smaller fragments 

in a separate latent space   , is connected to the emerging 

molecule structure. The full molecular graph is encoded in the 

combined latent space        , Figure 1. Training a network to 

Figure 2: FraGVAE autoencoder overview: The graph is decomposed into a bag of fragments, encoded to a latent space (  ) and then decoded to reproduce the fragment bag. 

Secondly the connectivity of fragments is encoded to a latent space (  ) and, using the bag of fragments and   , the molecular structure is reconstructed. Steps 1-4 demonstrate 

the first iterations of adding fragments/rings to a random starting fragment to reconstruct the molecular structure. 
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autoencode a molecular graph with N unique fragments which 

can connect to every other fragment results in N! training 

examples to autoencode a single molecular structure. This 

property helps the autoencoder to be robust to overfitting 

even with a small number of training examples. In contrast a 

similar string based approach would have 1 training example. 

 

The decomposition of ibuprofen to circular fragments centered 

on atoms (green nodes) with a radius of 1 with their 

neighboring atoms (cyan nodes/bonds) and reconstruction 

process can be seen in Figure 2. This iterative process is 

terminated when all dangling bonds are considered, resulting 

in the reproduction of the original molecular structure. All 

dangling bonds are removed by either connecting to a 

terminating fragment or connecting to another dangling bond 

on the emerging molecule forming a ring. To check the validity 

of each proposed subgraph (graph index  ) in iteration  , the 

proposed subgraph is encoded using the same encoding neural 

message passing network to create    with additional labels to 

atoms and bonds signifying unknown connections, which 

produces an encoding for     
 . Deep learning is then used to 

determine the rank of the next possible subgraph     
  given 

the previous selected fragment (     
   ) and the connectivity of 

the final substructure   .  

 

By using circular fragments with radius 1 when decoding the 

connectivity, one can exploit larger circular fragments. For 

example, consider the combination of two fragments along an 

edge. Since edges are inherently one dimensional, the 

combination of two circular fragments with radius of 1 

centered on atoms always results in a new circular fragment 

centered around a bond with radius 1 (Figure 3). The circular 

fragments centered on bonds with radius 1 must be included 

once and only once from a bag when rebuilding the molecular 

graph. As these bond fragments have set radii, undirected 

neural message passing networks are capable of producing 

unique fingerprints, similar to ECFP, each time a fragment is 

added to the emerging graph
15

. Interestingly, most functional 

groups have a set circular radius around a particular point, 

such as amines, sulfones, nitriles and many more. This 

suggests that this fragment-based scheme could be an 

appropriate basis set to describe a molecular functional space. 

 

Furthermore, if each fragment centered on an atom with 

radius 1 is unique, knowing the set of fragments centered on 

bonds with radius 1 is sufficient information to reconstruct the 

graph. However, most fragment bags with radius 1 are not 

unique, therefore higher radius information is required. This 

would not be true if the nodes in the fragments were clusters 

of atoms, similar to the Jin et al. Junction Tree Autoencoder
5
. 

As fragment clusters tend to be unique for reasonably sized 

molecular graphs (30 atoms), knowing the set of unique 

molecular fragments centered on edges would be sufficient 

information to reconstruct the connectivity of the clusters. 

Furthermore, using clusters would prevent the transformation 

of emerging molecular structures converting between 

different topologies. Here we focus on a difficult 

reconstruction task of using atoms as nodes. However, it 

should be noted that this cluster-based fragment approach is a 

logical extension of this scheme and should be explored in 

more detail. 

 

Unfortunately, by incorporating only a single fragment into the 

emerging structure, the continuous addition of fragments does 

not necessitate equivalent unique identifiers for larger radius 

fragments beyond a radius of 1 in the emerging structure due 

to the presence of dangling bonds compared to the encoded 

graph. This is exemplified by a non-circular fragment which 

cannot be uniquely identified as a single circular fragment 

around any atom or bond with any radius Figure 3. This is 

because the decoder does not have knowledge of the larger 

molecular structure beyond the dangling bond in the emerging 

graph. This is important as when the decoder compares the 

encoding of the original and emerging graph the decoder 

compares partial to completed circular fingerprints. This 

means the autoencoder learns how partial non-circular 

fragments are subfragments of larger circular fragments. With 

the assumption it is easier for the decoder to compare 

complete circular fragments, we bias the training data to 

favour the addition of fragments to bonds, which increases the 

maximum radius of circular fragments. However, as the 

molecule is generated fragment by fragment, it is trivial to 

determine the maximum circular radius of each fragment. To 

directly encode ring fragments, we incorporate an orthogonal 

MPNN dedicated to the communication of messages only 

along bonds in rings, making the network capable of 

generating a unique fingerprint for each ring fragment.  

 

One outstanding issue of this approach is that it is possible to 

build molecularly invalid structures. For example, this method 

could generate a molecule with a single dangling aromatic 

bond and inappropriate aromatic rings. The fragment bag 

could also be incomplete to reconstruct a molecule. Most of 

these failures are avoided by hard coding rules to prevent 

generation and addition of certain chemically implausible 

fragments. To avoid an incomplete fragment bag, one could 

train the fragment decoder to always decode a complete set or 

excluding fragments which do not have a complementary 

fragment. A limitation of this model is that it does not contain 

any geometric information, hence, it is unable to distinguish 

stereoisomers. This could possibly be addressed by including 

Figure 3 Examples of circular fragments centred on atoms and bonds with radius 1 and 

2 and a non-circular fragment which cannot be uniquely identified from any 

bond/atom with a set radius. The ML algorithm learns how to describe circular 

fingerprints such that non-circular fragment are related appropriately. 
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geometric information (such as relative distance and chirality) 

and message passing directly to the next nearest neighbors.  

 

Even though it is possible for the autoencoder to not 

decompose and reconstruct the molecule perfectly, the 

purpose here is to use an unsupervised learning algorithm to 

remove redundant information while describing the relation 

between fragments. In doing so this approach produces an 

orthogonal and complete representation of all fragments in a 

reduced basis set compared to standard ECFP. Due to limited 

computational resources we have not explored the 

optimization procedure for selecting model hyperparameters 

that trade off between completeness, orthonormality and 

basis set size which should be explored in future work. In this 

work we select intuitive dimensionality reductions and 

hyperparameters. For example, in our organic additives 

dataset we reduce the dimensionality of the ECFP with 

maximum radius 3 from 937 to 30 using FraGVAE which is less 

than the number of training examples (69).  

Results 

Predictive performance of chemical fingerprints in small calculated 

datasets 

Here we compare the predictive performance of various 

chemical fingerprints trained on random small subsets (10 to 

100) and tested on random larger subsets (500 to 1000) of big 

datasets. The molecular fingerprints methods include 

extended-connectivity fingerprints, ChemVAE, random 

FraGVAE and FraGVAE. Extended-connectivity fingerprints 

ECFP is a standard circular fragment based fingerprint 

technique used by chemists, which provides a binary identifier 

for each unique circle fragment of a set radius
16

. ChemVAE is 

the standard string based molecular autoencoder used for 

automatic chemical design commonly cited in the literature
4
. 

ChemVAE converts the simplified molecular-input line-entry 

system (SMILES) representations of a molecule to a one-hot 

encoding which is autoencoded using standard natural 

language processing techniques. FraGVAE with fixed random 

small weights were chosen, as graphical convolutions with 

fixed small random weights can be an appropriate fingerprint 

and the difference between the random and the trained 

FraGVAE can be attributed to the FraGVAE model learning
15

.  

 

Here we predict the theoretical octanol/water partition 

coefficient (logP), quantitative effective drug score (QED) and 

synthetic accessibility score (SAS) from 250,000 random 

structures from the Zinc15 database calculated by RDKIT
4,17,18

. 

The Zinc15 dataset was chosen as logP, QED and SAS are well 

established experimental indicators of suitable molecular 

structures with robust theoretical models
3
. In addition, most 

predictive performances of the autoencoded latent space 

models are tested on the same random Zinc15 dataset from 

Gomez et. al. using 10-fold cross validation 
4,5,17,19,20

. 

Autoencoders report their predictive performance of logP, 

QED and SAS as they are typically used as generative models to 

generate new molecular structures with optimal values. In 

addition we also compare the experimental solubility of 

molecules in aqueous solutions from the ESOL datasets which 

are commonly used to bench mark novel MPNN in big data 

applications 
21,22

.  

 

Prior to training the predictive models, we train FraGVAE to 

reconstruct molecules in the datasets, which include both the 

training and test data. In most ML models one always 

separates the training and the test set, here we train our 

autoencoder to reconstruct molecules in both the training and 

test set (candidate set). Training the autoencoder in this 

manor allows us to use unsupervised learning to sort the test 

set molecules in relation to other molecules in the training set. 

This approach reduces the amount of information required to 

find appropriate molecules in the test set. 

 

To compare the predictive performance of chemical 

fingerprints trained on small datasets, we train and test a 

Figure 4: Predicative performance of chemical fingerprints predicting logP, SAS and QED as a function of training size dependence. 

The shaded area correspond to one standard deviation of the error. 
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number of random forest models on random subsets of the 

dataset and compare the root mean squared error (RMSE), a 

standard practice, of different fingerprinting techniques
22

. In 

this small data regime we directly compare ECFP, a trained 

FraGVAE, FraGVAE with fixed random small weights and 

ChemVAE fingerprints. ChemVAE is a string based molecular 

autoencoder reported by Gomez et. al. 
4
 The maximum 

number of basis vectors for the FraGVAE models was selected 

to be on the order of a hundred dimensions which is 

comparable to ChemVAE and the number of training examples 

in the small data regime. Specific details can be seen in 

supplementary information*. The specific basis vectors used in 

each model was determined in situ by ranking the Pearson 

coefficient of each basis vector and selecting the top number 

of vectors with the largest Pearson coefficient which reduces 

the RMSE in threefold cross validation. 

 

These results demonstrate that the FraGVAE fingerprints have 

the best predictive performance in the small data regime when 

predicting the logP from the Zinc15 database and the molecule 

solubility in the small datasets regime between 10 to 100 

molecular structures compared to all other fingerprint 

techniques. To illustrate this point the FraGAVE model requires 

approximately 42 and 60 training examples to have the same 

error that ECFP have with 100 examples when predicting logP 

from Zinc15 and aqueous solubility from ESOL datasets 

respectively. Furthermore, the area under ECFP RMSE curve 

for FraGVAE is the only model that is consistently positive. It is 

possible the error could be further reduced by training the 

FraGVAE method only on the example used in the training and 

test set subsets instead of the complete dataset. This was not 

attempted as this would require a large number of FraGVAE 

models to develop valid statistics.  

 

This suggests that graphical autoencoders are possibly well 

suited for small datasets compared to standard fingerprints, 

for example ECFP. This technique could be used in the large 

data regime as well, however, MPNN trained to directly 

predict a metric have been demonstrated as appropriate for 

large data applications when there is sufficient data to avoid 

over fitting
22

. FraGVAE did not reduce the RMSE error in the 

SAS and QED prediction in the small data regime; however, it 

clearly did not substantially increase the error suggesting it is a 

competitive fingerprint technique. For a direct comparison of 

the predictive performance of FraGVAE to other autoencoders 

in the literature in the large data regime, please see the 

supplementary information*.  

 

Screening molecular additives for organic semiconductors with 

neural passing network fingerprints 

To demonstrate that graphical autoencoding is a reasonable 

strategy in a real-world situation, we demonstrate this 

approach in a molecular optimization problem: searching for 

molecular additives for organic semiconductors. In organic 

electronics, the relevant material properties such as mobility, 

electroluminescence, quantum yield and photovoltaic 

efficiency are incrementally improving
23–26

. Unfortunately, the 

poor stability due to extrinsic environmental species, such as 

water and oxygen contamination, is a well-documented 

phenomenon that is increasingly limiting industrial 

applications
27

. One possible route to solve this problem is to 

incorporate liquid or solid-state molecular additives which 

improve the operational and environmental stability of 

conjugated polymers used in field-effect transistors and 

diodes
25,26,28

.  

 

The underlying mechanism of these additives is not entirely 

understood, but it is believed to be related to an interaction 

with water in voids in the polymer
25

. For solvent additives, we 

know that the formation of azeotropes plays a key role in 

removing water related traps. For solid state additives on the 

other hand, the mechanism is less well understood. The 

mechanism for the solid state additives is not clear as doping 

and non-doping additives improve device stability 

characteristics, and direct spectroscopic evidence of the 

additives in the film is challenging due to the small sample size 

and low impurity density. It is challenging to probe these voids 

and to determine the exact morphology of the material 

system, physical interactions and possible chemical byproducts 

to generate a clear experimental picture of the process. To find 

new molecular additives, there is insufficient correlational 

data, theoretical knowledge and experimental techniques to 

create an indisputable model of the material system. To find 

new molecular structures, one uses expert knowledge to 

search for new molecular additives, which can be biased. Here 

we augment this approach by using our FraGVAE model to 

provide a quantifiable unbiased opinion as to whether or not a 

molecular additive would improve stability in an organic 

electronic application. 

 

In order to use the FraGVAE as a quantifiable unbiased 

opinion, 66 molecular additives were tested (Figure 5). They 

were chosen based on cost and variety of functional groups 

which are all known to show interaction with water species 

(ester, nitrile, phenyl, amine, nitro, quinone, sulfonic acid, 

ether, alcohol and halogen groups). To determine whether 

the additives were capable of improving device stability in 

organic semiconductors, they were tested in top-gate 

bottom-contact organic field effect transistors (OFETs), where 

the organic semiconductor was the amorphous polymer 

indacenodithiophene-co-benzothiadiazole copolymer (IDTBT). 
  

Table 1: Area under ECFP RMSE curve between 10 and 100 training examples.  

Model Zinc15 logP Zinc15 SAS Zinc15 

QED 

ESOL 

ChemVAE -18.4 -11.8 -1.41 -11.9 

Rnd 

FraGVAE 
5.49 -6.7 0.59 7.9 

FraGVAE 8.26 1.74 0.06 17.4 
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Figure 5: All additives in the cross validation set with their corresponding identification number (corresponding number appears below structure). Molecules 

highlighted by a green square improved device characteristics. Molecules marked with the blue characters F, R, E and C were inaccurately classified by FraGVAE, 

random FraGVAE, ECFP and ChemVAE respectively determined by LOOCV. 
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During the fabrication, the molecular additives were 

incorporated into the device by blending the additive solutions 

into the IDT-BT solutions. Due to a large number of additives 

and long fabrication process, which causes variations between 

batches, we classified the additives in a Boolean (binary) 

manner to compare the results. It should be noted though, 

that all additives were tested against a reference and only in 

the case of a statistically significant improvement is an additive 

considered to be functional. Therefore, the additives were 

classified as functional additives if they were able to improve 

device characteristics through any process, where voltage 

threshold was reduced by 5V. The improvement with the 

addition of the additive TCNQ (red) compared to a reference 

sample without additives (black) is demonstrated in Figure 7, 

where the additive decreases the voltage threshold from -19 

to -6V.  

 

During the search for new additives, we discovered the solid-

state additives undergo a chemical reaction with water, which 

correlates with improved device characteristics. Unfortunately, 

the chemical reaction is non-trivial and direct evidence of this 

reaction occurring in the film is challenging (more information 

can be seen in the supplementary section* Figures 2 to 8). As a 

consequence, we do not have a strong theoretical 

understanding of this process. Instead, we use a quantified 

structure-based approach as an unbiased opinion based on all 

empirical evidence.  

Table 2: Predictive performance of different chemical fingerprinting techniques on 

cross validation and test set. NPV and PPV are the negative and positive predication 

values, i.e. the percentage of additives correctly labelled as negative and positive 

respectively. ROC-AUC is the area under the receiver operating characteristics curve. 

 
Cross Validation Test 

Method 
P

P
V

 

N
P

V
 

R
O

C
-A

U
C

 

P
P

V
 

N
P

V
 

R
O

C
-A

U
C

 

ChemVAE 0.94 1 0. 94 0 1 0.60 

ECFP 1 1 0.99 0.33 1 0.63 

Rnd FragVAE 0.94 0.96 0.94 0.5 0.67 0.67 

FragVAE 0.94 1 0.995 1 0.83 0.90 

 

The complete set of all molecular structures tested, their 

identification number and their classification of whether the 

molecular additive could improve devices characteristics 

(highlighted in green) are seen in Figure 5. Based on this small 

dataset, we would like to extrapolate and find new molecular 

structures given our small amounts of data. To extrapolate 

from our given data, here we train simple linear logistic 

regression models, which were optimized using leave-one-out 

cross validation. Optimization was performed via a grid search. 

Molecular fingerprint techniques include FraGVAE, random 

weight FraGVAE, ECFP and ChemVAE. To generate the 

FraGVAE fingerprint, we train the FraGVAE to reconstruct all 

molecules in both the training and test sets. For the ChemVAE 

model there is only a single training example for each 

molecular candidate, we use the ChemVAE model trained on 

the Zinc15 dataset along with our candidate structures.  

 

To test the performance of the model, we selected a set of 

molecular additives based on chemical intuition to act as 

appropriate molecular additives. The molecules in the test set 

and their corresponding reference number and classification 

can be seen in Figure 7. In particular we select HAT-CN6 (#77), 

DDQ (#78) and Chloranil (#71), which are all well-known 

electron acceptors for organic electronics. The additives #72, 

Figure 7: Top-gate bottom-contact organic transistors with voids in the organic 

semiconductor (OSC) film believed to be responsible for defects sites (left). Example of 

threshold voltage extraction from transfer characteristics of top-gate bottom-contact 

IDT-BT semiconductor transistor with and without TCNQ, demonstrating TCNQ is 

capable of improving device characteristics in OFETs (right). 

Figure 6: All molecular structures in the test set with their corresponding identification number. Molecules highlighted by a green 

square improved device characteristics. Molecules marked with the blue characters F, R, E and C were inaccurately classified by 

FraGVAE, random FraGVAE, ECFP and ChemVAE respectively. 
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74, 76, 79 and 80 have the 1,1-dicyanoethene fragment 

observed in almost every functioning additive in the training 

data. In addition, we tested additives #70, 73 and 75, which 

have electron-accepting groups attached to quinones, which 

are similar structural motifs to molecular additives classified as 

working in the training set. We also synthesized additive # 80, 

which adds a soluble side chain onto F2-TCNQ (#58). The 

modification of the transfer characteristics with the additives 

can be seen in the supplementary information*. The cross 

validation and test metrics can be seen in Table 1 for various 

fingerprinting methods.  

Discussion 

These results demonstrate that ChemVAE, which appears 

promising for Bayesian optimization of molecular structures in 

big data contexts, does not seem to be effective for small 

datasets. This is believed to be caused by the inherently 

discrete random jumps between near identical molecular 

structures due the text encoding algorithm necessity of 

converting an arbitrary topology of a molecular structure to a 

one-dimensional object. For example, the canonical SMILES 

representations of dimethyl-TCNQ (#65) are considerably 

different than the SMILES of both TCNQ (#69) and F2-TCNQ 

(#58). This would result in molecules with near identical 

structures (and assumed properties) being located in 

completely different locations of the latent space and more 

experimental data is needed to fulfil the Nyquist criterion. In 

big data Bayesian optimization applications, where there are 

appropriate theoretical models of the system, Nyquist criteria 

can be overcome computationally through big data. 

 

ECFP worked extremely well on the training set, as all 

molecular structures in the test set can be correctly classified 

by identifying the presence of fragment (#72) in a ring or 

multiple methyl 2-cyano-3-methylcrotonate fragments (#42). 

This approach is over fitting so breaks down in the test set 

where not all additives classified as working contain the same 

fragment, such as additives #77, 78, 79 and 80, which have 

different fragments or smaller similar sub-fragments. FraGVAE 

was able to detect similarities between functioning additives in 

the training and test set even though there was no obvious 

fragment correlation, which is the major benefit of using 

graphical encoded fingerprints. By sorting the graph through 

MPNN, the algorithm can recognise similarities between 

fragments which would be ignored by standard approaches 

which count discrete fragments.  

 

Experimentally the authors were surprised that additive #71 

did not work as it is a known organic dopant. Interestingly 

FraGVAE also predicted additive #71 as an appropriate additive 

based on the training set. This suggests that FraGVAE intuition 

was reasonable to predict additive #71 as functioning even 

though it does not contain exactly the same functional groups 

that are exclusively present in positive training set examples. 

 

Conclusions 

In this work, we address the fundamental problems in applying 

artificial intelligence to the majority of molecular optimization 

problems. The obstacle in applying ML is that there is 

insufficient experimental data or theoretical knowledge to 

build a robust statistical model to screen candidate structures. 

We propose an approach which uses graphical autoencoders 

to sort molecules based on their structures. As the graphical 

decoders are currently an area of interest, we propose the first 

fragment based decoder which reconstructs a molecular graph 

first through the direct decoding of small graph fragments, 

followed by the recombination of the fragments. Finally, we 

demonstrate that sorting molecular graphs with a graphical 

autoencoder is a valid approach to improve the predictive 

accuracy of quantitative structural models in the small data 

regime compared to standard molecular fingerprints. We have 

demonstrated that this method appears usually for organic 

electronic applications with novel materials systems which do 

not have an established theory and experimental practices. 

This approach appears promising for other fields such as drug 

discovery, chemistry and material science. 

Experimental 

IDT-BT OFETs where Top-Gate Bottom Contact devices with a 

W/L of 50. All devices were prepared on Corning 1737F 

substrates supplied by Precision Glass & Optics. IDT-BT was 

supplied by I.M. and dissolved at 10g/L in DCB with the 

molecular additives‡. The bottom contacts were gold. IDT-BT 

was spun onto the substrate, baked at 90°C for 1hr. A Cytop M 

layer of 500nm was deposited as a dielectric. Aluminium gates 

were evaporated via shadow mask. 
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