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Ferromagnetic spin correlations in a few-fermion system
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We study the spin correlations of a few fermions in a quasi-one-dimensional trap. Exact diagonalization
calculations demonstrate that repulsive interactions between the two species drives ferromagnetic correlations.
The ejection probability of an atom provides an experimental probe of the spin correlations. With more than five
atoms trapped, the system approaches the itinerant Stoner limit. Losses to Feshbach molecules are suppressed
by the discretization of energy levels when fewer than seven atoms are trapped.
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Recent experimental advances allow investigators to con-
fine up to twenty atoms in a single trap and address
their quantum state [1,2]. This precise control enabled the
Heidelberg group to confirm the fundamental physics of short-
range repulsion [4–15]. Here we demonstrate that just such
repulsive interactions acting between a few fermions allows
us to construct a Hamiltonian analogous to the Stoner model
[16] and offers experimentalists an opportunity to observe
the emergent ferromagnetic correlations without losses to
Feshbach molecules.

The itinerant ferromagnet predicted by the Stoner
Hamiltonian has never been cleanly realized and studied
in the solid state. However, it was proposed [17–19] that
a ferromagnetic phase could be created with a fermionic
cold atom gas. An experiment by the MIT group displayed
signatures compatible with ferromagnetism [20–22], but the
observations were later explained by a loss mechanism
[23–25]. To circumvent losses it has been suggested that
magnetic correlations could be explored in systems with a
mass imbalance [26], two-dimensional geometry [27], spin
spirals [28], or flux lattices [29]. Here we demonstrate how a
quasi-one-dimensional system containing only a few fermions
could avoid the problems associated with losses and display
ferromagnetic correlations. Our main result is shown in Fig. 1:
The discretization of energy levels in the few-fermion system
means that losses to Feshbach molecules are restricted to a
narrow range of interaction strengths, allowing a tunneling
measurement of the ejection of an atom to expose the
underlying ferromagnetic correlations.

In this Rapid Communication we first describe the pro-
posed experimental setup, then demonstrate the emergence of
ferromagnetic correlations that we study through a tunneling
process. Finally, we show that the formation of the competing
dimer state is inhibited by the discretization of the energy
levels in the harmonic confining potential.

I. EXPERIMENTAL SETUP

A fermionic gas of two hyperfine states with pseudospin
σ ∈ {↑ ,↓} is tightly confined as shown in Fig. 1. We
seek to solve the Hamiltonian Ĥ = ∑

i[−h̄2∇2
i /2m + mω2

⊥
(x2

i + y2
i )/2 + mω2

‖z
2
i /2] + ∑

i<j V (ri − rj ), with m the
atomic mass and ri = (xi,yi,zi) the position of atom i.
The confining potential is axially symmetric with trap fre-
quencies ω⊥ = 10ω‖ [2,3], and we define the harmonic
oscillator lengths ai = √

2h̄/mωi . Only a single transverse

mode is occupied, constraining the atoms into the quasi-1D
regime. We therefore reparametrize the interspecies potential
V (r) = −U�(R − |r|) first into the s-wave scattering length
a3D = R[1 − tan(χ )/χ ] with χ = R

√
mU/h̄, and then as a

one-dimensional pseudopotential [30] g = h̄2a3D/ma⊥(a⊥ −
Ca3D) with C = ζ (1/2) ≈ 1.46. A confinement-induced reso-
nance emerges at a3D = a⊥/C. We verified that the results tend
to the contact limit below R = 0.2a‖. In the limit ω‖ → 0, we
recover the Stoner Hamiltonian Ĥ = ∑

i[−h̄2/2m(∂2/∂z2
i ) +

mω2
‖z

2
i /2] + ∑

i<j gδ(zi − zj ).
To probe the quantum state we apply a magnetic field

gradient to tilt the external potential (see Fig. 1) and allow
one atom to escape. We denote the number of trapped spins
N↑ and N↓. Investigators can directly measure the spin in the
quantization direction Sz = (N↑ − N↓)/2 and the total number
of atoms N↑ + N↓ in the final state using the single atom
addressability [2]. However, our measure of ferromagnetic
correlations, the spin S = 〈∑n(c†n↑c

†
n↓)·σ ·(cn↑cn↓)T〉, is SU(2)

invariant, where σ denotes the vector of Pauli-spin matrices
and cnσ is the annihilation operator of an atom of spin σ

from harmonic oscillator state n. Therefore, the spin quantum
number defined through s(s + 1) = 〈S2〉 is a good quantum
number, allowing us to define the quantum state |s,N↑,N↓〉.
With two atoms a polarized s = 1 state can be generated not
only from the Sz = 1 state, denoted |1,2,0〉, but also from the
Sz = 0 state denoted |1,1,1〉, corresponding to the prototypal
triplet states |↑↑〉 and (|↑↓〉 + |↓↑〉)/√2. The unpolarized
Sz = 0 state, denoted |0,1,1〉, corresponds to the singlet state
(|↑↓〉 − |↓↑〉)/√2.

II. ENERGY OF STATES

Our main tool to study the system is exact diagonaliza-
tion. We build a one-atom basis from the Gaussian orbitals
φnx,ny,nz (x,y,z) of the harmonic trapping potential. We retain
all orbitals that satisfy (nx,ny) � 2 and nz � 20. We construct
the Slater determinants and select the 10 000 determinants with
lowest noninteracting energy, guaranteeing convergence of the
energy of the open channel within 0.005h̄ω‖. This is much
smaller than the energy scale of magnetization, N↑N↓h̄ω‖,
and less than the energy difference from the true itinerant state
shown in Fig. 2(f). We next calculate the interaction matrix
elements numerically, construct the Hamiltonian matrix for a
particular g using the Slater-Condon rules, and diagonalize it
to obtain the eigenstates {ψm(g)}.
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FIG. 1. (Color online) Left: The green solid line is the trapping
potential V (z) that is lowered to the green dashed line to allow an atom
to escape. The energy levels for up-spin (red) and down-spin (blue)
atoms within the potential are shown in brown, with the putative
escape of the highest energy up-spin atom. Right: The ejection
probability of a down-spin atom into a state fully polarized along
the quantization axis. The gray region is excluded due to atom losses
for differing initial numbers of atoms.

Exact diagonalization is restricted to systems of fewer than
five atoms. However, the experimental setup can contain up
to twenty atoms so to analyze the general many-body case
we use the QMC code CASINO [31,32]. The approach is a
refinement of that used in previous studies of ferromagnetism
[20,33–37]. We use a trial wave function ψ = FD that is
a product of a Jastrow factor F and a Slater determinant,
D = Â{∏i∈n↑ φnz (ri)}Â{∏i∈n↓ φnz (ri)}, where Â is the anti-
symmetrization operator. The orbitals are chosen to give the
correct noninteracting state on either side of the confinement-
induced resonance. The Slater determinant accounts for
fermion statistics while the Jastrow factor includes further
interparticle correlations. To study the open channel and
avoid occupation of the bound state we use the lowest-order
constrained variational method [38,39] that is common in
nuclear physics and has also been used to study cold atom
gases [36,37,40,41]. This method solves the Hamiltonian
[−d2/dr2 + mV (r)]rf (r) = k2rf (r). For low-energy s-wave
scattering this gives f (r) ≈ 1 − a3D/r that has a node at the
scattering length a3D, and saturates at large distances. To guar-
antee occupation of the upper branch, this solution is embedded
into a Jastrow factor F = ∏

i,j f (|ri − rj |) where ri is the
position of the ith up-spin and rj the j th down-spin [36,37]. In
the quasi-one-dimensional setting the transverse confinement
does not allow occupation of the bound state in the range
of interaction strengths of interest 0.24 � −h̄ω‖a‖/g < ∞.
The maximum binding energy of the last band to cross the open
channel is ∼−1.5h̄ω‖, which is much less than the energy scale
of the transverse modes ∼20h̄ω‖. This was further confirmed
by studying the exact diagonalization states, where deep in
the super-Tonks regime occupation of the higher transverse
modes is ∼10−7, resulting in the strong agreement between
exact diagonalization results and QMC demonstrated in
Figs. 2(a)–2(d). Meanwhile, to calculate the binding energy
of the molecule at g > 0 and the ground open channel state
at g < 0 we use a Jastrow factor F = eJ , where J includes
the polynomial expansion in atom-atom separation proposed
in Ref. [42] with eight variational parameters.

With the exact diagonalization and QMC formalism in
place, in Figs. 2(a)–2(d) we compare the ground-state energy
predicted by both exact diagonalization and QMC, and also
the two-atom exact analytical solution [4,6,7]. There is strong
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FIG. 2. (Color online) (a)–(d) The energy of the (two–five)-atom
states calculated with exact diagonalization. The red, magenta, and
blue lines highlight open channels with § signifying identical states
with larger Sz, and gray lines indicating all other states. The green
line shows the final bound molecular state that crosses the low-spin
open channel, and the green dashed line the bound state with the
COM motion excited into the nx,y = 2 orbital examined in Ref. [13].
The points show QMC results whose uncertainty is the point size.
(e) Density profile of the state |1/2,2,1〉 for two majority species
atoms with a pinned minority atom. (f) Difference in energy from
the polaron in an infinite system [45] with number of trapped atoms.
(g) Pair correlation function at the confinement-induced resonance
around a down-spin pinned at z = 0 normalized by the noninteracting
density profile.

agreement at all interaction strengths. The underlying attrac-
tive potential means that exact diagonalization also delivers
the multitude of molecular bound states and repeated bands
incremented by h̄ω‖ corresponding to center-of-mass (COM)
motion. In the two-atom system Fig. 2(a), in the noninteracting
regime, −h̄ω‖a‖/g → −∞, the lower spin state |0,1,1〉 has
the lowest energy. At the confinement-induced resonance
the spin states cross [2,3], and in the super-Tonks regime,
−h̄ω‖a‖/g → ∞, the s = 1 states have lower energy.

In the three-body system in Fig. 2(b) three open-channel
states are possible: the low-spin |1/2,2,1〉 and the high-spin
states |3/2,3,0〉 and |3/2,2,1〉. Similarly to the two-body
system, at weak interactions the s = 1/2 state has the lower
energy, the bands cross at the confinement-induced resonance,
and in the super-Tonks regime the s = 3/2 states are favorable,
in good agreement with existing literature [9,12]. In Fig. 2(c)
we also studied the four-atom case where three values for the
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spin are available: s ∈ {0,1,2}. The three bands cross at the
confinement-induced resonance meaning that any potential
onset of ferromagnetism would be abrupt, as occurs in the
infinite-body case [43,44]. With five atoms the molecular
bands become more prevalent, and we will later demonstrate
how they allow losses into bound molecules.

In the super-Tonks regime the high spin state is energetically
favorable so the gas would enter the magnetic phase if it
were not blocked by spin conservation. However, the spatial
distribution of the atoms betrays the underlying magnetic
correlations. In the three-atom state |1/2,2,1〉, we pin the
minority down-spin atom at z = −1.5a‖. In the noninteracting
case the up-spin atom density is concentrated around the
trap center irrespective of the down-spin position. At the
confinement-induced resonance the up-spin density is driven
to zero at the down-spin pinning position, whereas in the
super-Tonks regime, the up-spin atoms are forced away from
the down-spin forming a separate magnetic domain.

Now that we have observed the emergence of magnetic
correlations we study the energy of a single down-spin in a
trap with N↑ majority spin atoms to assess the consequences
of system size and whether the system serves as a model for the
Stoner Hamiltonian. We compare our system to the analytically
solvable polaron limit [45] of a single down-spin in a sea
of up-spin atoms. We first study the energy of a polaron in
Fig. 2(f). With N↑ = 1, exact diagonalization displays less
repulsion energy than the infinite-body case. On inserting more
majority spin atoms the energy quickly tends to the infinite-
sized limit [45], being within �1% at all interaction strengths
with Ntot � 5. Second, in Fig. 2(g) we study the pair correlation
function. With more majority spin atoms the pair correlation
function quickly tends to the infinite-body limit [45], with the
correct correlation hole and first Friedel oscillation observed
for Ntot � 5. Both pieces of evidence indicate that systems
with Ntot � 5 are faithful representations of the itinerant Stoner
Hamiltonian.

III. TUNNELING STATISTICS

Although the magnetic phase is energetically favorable in
the super-Tonks regime its formation is prohibited by spin
conservation. In Fig. 1 we therefore tilt the trap to allow one
atom to escape. This allows the system to tunnel into the
magnetic ground state containing one fewer atom. We calculate
the tunneling rate using Fermi’s golden rule. The tunneling rate
� exhibits an exponential dependence on the escape energy,
so we need only consider tunneling from the highest occupied
orbital with maximal energy Eesc. We now consider a general
intermediate interaction strength and calculate the probability
of forming a particular state i, pi = �i/

∑
j �j . This tunneling

probability calculated from the exact diagonalization data is
shown in Fig. 1. We focus on the polaron limit with multiple
up-spin atoms and a single down-spin atom.

At zero interactions the highest energy majority spin atom
is expelled leading to zero probability of ejecting the minority
spin atom, whereas at the confinement-induced resonance
all atoms have an equal probability of expulsion. In the
super-Tonks regime starting with Ntot atoms, the system will
tunnel most rapidly into the state with lowest energy—the fully
polarized state with s = (Ntot − 1)/2. There are two quantum

states available: with Sz = (Ntot − 1)/2 formed by the ejection
of the down-spin atom and Sz = (Ntot − 2)/2 formed by
the ejection of an up-spin atom. Starting with three atoms
tunneling into a two-atom state, these are simply the triplet
states |↑↑〉 and (|↑↓〉 + |↓↑〉)/√2. These two possibilities
occur with equal probability, giving a plateau probability of
1/2 for ejecting a minority spin atom in the super-Tonks regime
irrespective of the initial number of atoms. The probability
curves in Fig. 1 become increasingly sharp with more atoms
because of the larger energy exchange over the same range of
interaction strengths.

The tunneling method is sensitive to Sz but not s so
does not provide a full diagnosis of the final quantum state.
This is exemplified when starting from the polaron state in
the super-Tonks regime where the ejection probability of a
minority spin is 1/2 rather than unity. To distinguish the
|1,1,1〉 state from the other possible Sz = 0 state, |0,1,1〉,
one could ramp the interaction strength into the noninteracting
regime and measure the energy through a second tunneling
measurement [2,3]. Should the |1,1,1〉 state be dominant the
energy will be independent of interaction strength, whereas if
|0,1,1〉 dominates, the energy will fall.

IV. LOSS MECHANISM

The search for itinerant ferromagnetism in a cold atom
gas has been plagued by a competing loss process [23–25].
Several models for loss have been put forward including
two- and three-body models [23,24,46,47], and losses to
states excited with transverse COM motion [13–15,25]. To
conserve energy, both mechanisms require the open channel
to cross molecular bands. Our Hamiltonian only displays
avoided crossings between states with the same COM quantum
number. However, states with different COM motion could
have avoided crossings due to unforeseen perturbations such as
an anharmonic potential [13–15,25]. To guarantee a loss-free
experiment, we fence off the region in which the open channel
is crossed or anticrossed by any other state. This pessimistic
approach is robust to unforeseen perturbations that may alter
the crossings but will not significantly alter the positions of
the bands. We first focus on the three-body system where we
use Fig. 2(b) to define a loss region as where the desired open
channel |1/2,2,1〉 crosses the molecular bound states.

The ground molecular bound state labeled (i) is lower than
the entire open channel |1/2,2,1〉 so its formation is prohibited
by energy conservation. The molecular bound state can be
excited with COM motion, giving rise to increasingly populous
families of curves. The curves (ii) are the first set of molecular
bands to cross the state |1/2,2,1〉. Further crossings from
more excited molecular bands occur up to the confinement-
induced resonance, prohibiting experimentalists from looking
for magnetic correlations within 0 � −h̄ω‖a‖/g � 0.24. This
region contains the molecular bound state with COM motion
excited into the second transverse mode that is a significant
cause of loss in an anharmonic potential [13–15,47]. Though
the definition of g used to characterize the interaction strength
does not conform to the correct effective pseudopotential for
the excited transverse states [48], it properly describes the
experimentally relevant ground transverse states.
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FIG. 3. (Color online) (a) The energy bands, following Fig. 2
conventions. (b) The map of crossing events for the nband-th excited
molecular state with N↑N↓. Blue denotes a single crossing, and red
a double crossing. (c) The minimum interaction strength to avoid the
band crossing region.

We note that it is possible to adiabatically transit
across the region of band crossing. Investigators can
perform experiments on the |1/2,2,1〉 state either side
of the shaded region in Fig. 1, but not within it. A
similar analysis of a system with four atoms reveals that
losses would block the region 0 � −h̄ω‖a‖/g � 0.36,
and with five atoms the range 0 � −h̄ω‖a‖/g � 0.42.

Exact diagonalization cannot accurately address larger
systems. We therefore turn to QMC for the open channel
and the variational QMC for the molecular band. In the
super-Tonks regime the energy difference between unpolarized
and polarized states is h̄ω‖N↑N↓, so we categorize states
by N↑N↓. We focus on the state that bounds the loss
region, with the molecule having no COM motion, and other
atoms in higher energy orbitals compatible with the correct
noninteracting energy. With N↑N↓ = 2 in Fig. 2(b) the excited

molecule bands cross the upper branch only once, whereas
with N↑N↓ = 8 in Fig. 3(a) a molecular band, highlighted
in green, crosses the open channel twice. In Fig. 3(b) we
show whether the nband-th family of excited molecular bands
crosses the open channel once or twice. The double crossings
first emerge at N↑N↓ = 7 and become ubiquitous as N↑N↓
rises. This leads to a proliferation in the total number of band
crossings, and as shown in Fig. 3(c) a dramatic rise in the min-
imum interaction strength −h̄a‖ω‖/g required to avoid band
crossings.

V. DISCUSSION

A quasi-one-dimensional system containing a few
fermionic atoms poses an opportunity to explore ferromagnetic
correlations. Discretization of the energy levels offers the
stabilization of a ferromagnetic state without losses. We have
calculated the energy structure and studied the ejection proba-
bilities. Both the polaron energy and pair correlation function
tend to the itinerant limit when Ntot � 5, whereas molecule
losses restrict the observation of magnetic correlations to
Ntot � 6. Therefore, systems with Ntot ∈ {5,6} could present
an opportunity to observe magnetic correlations driven by the
Stoner mechanism.
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