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The few-fermion atomic gas is an ideal setting to explore inhomogeneous superfluid pairing analogous

to the Larkin-Ovchinnikov state. Two up and one down-spin atom is the minimal configuration that

displays an inhomogeneous pairing density, whereas imbalanced systems containing more fermions

present a more complex pairing topology. With more than eight atoms trapped the system approaches the

macroscopic superfluid limit. An oblate trap with a central barrier offers a direct experimental probe of

pairing inhomogeneity.
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The rapidly advancing field of ultracold atomic gases
has opened new vistas of experimentally accessible phases
of matter. The observation of superfluidity [1–4] and
density imbalance [5,6] in a two-component Fermi gas
presents the building blocks required to realize the inho-
mogeneous superfluid phase proposed by Fulde-Ferrell-
Larkin-Ovchinnikov (FFLO) [7,8]. This state plays a
central role in our understanding of superconductors,
superfluids, and particle physics [9] but has never been
unambiguously realized in solid state superconductors
[10]. Theory predicts that the FFLO phase should be
present in a three-dimensional atomic gas; however, it
has not been observed [5,6]. In a one-dimensional imbal-
anced atomic gas, although the superfluid is predicted to
be stable [11,12], any inhomogeneous pairing present was
too weak to be observed [13,14]. We now exploit the new
experimental capability to trap, manipulate, and address a
few fermionic atoms [15,16] to propose a protocol to create
an inhomogeneous superfluid. The pairing has a simple
nodal structure that can be directly characterized by
experiment.

To study the few-fermion superfluid we take advantage
of recent experimental developments that allow investiga-
tors to confine up to ten atoms in a trap and address their
quantum state [15–17]. This presents a unique opportunity
to study the microscopic physics of contact interactions
[18–25] in a tractable setting, and then scale the intuition
up to a many-body system. Following this program, exper-
imentalists could realize an analog to the Stoner model for
itinerant ferromagnetism [26,27], and the direct and double
exchange mechanisms [28]. We now turn from repulsive
to attractive interactions to study a counterpart to the BCS
superconductor. Though the three-fermion ground state has
been previously examined [29,30] in both three and one
dimension [31], the authors overlooked the underlying
inhomogeneous pairing.

To orient the discussion we first expose the symmetry
changes in the ground state that foretell the emergence of
inhomogeneous pairing. Next we study the inhomogeneous
pairing for a state with N" up-spin atoms and N# down-spin

atoms, showing that the number of nodes in the pairing
density is N" � N#. Therefore, to render a straightforward

pairing topology we focus on the few-fermion system.
The simple spatial distribution couples to the trap oblateness
and a central barrier allowing us to propose a direct experi-
mental probe of the pairing inhomogeneity. The two up and
one down-spin excited states are prototypes for the ground
state ofmany-body systems.Moreover, withmore than eight
atoms trapped the system approaches the macroscopic
superfluid state, motivating our program to probe the
infinite-body system from a few-atom standpoint.
Formalism.—A fermionic gas of two hyperfine states

is tightly confined to realize the Hamiltonian Ĥ ¼
�@

2r2=2mþm!2
?ðx2 þ y2Þ=2þm!2

kz
2=2þ gðr1 � r2Þ,

with m the atomic mass, and a harmonic oscillator length

ak ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
@=m!k

q
. We parametrize the interspecies potential

gðrÞ¼�U�ðR�jrjÞ through an s-wave scattering length

a ¼ R½1� tanðR ffiffiffiffiffiffiffiffi
mU

p
=@Þ@=R ffiffiffiffiffiffiffiffi

mU
p �. We denote the gen-

eral state jN"; N#i, and the (excited) state with symmetry

� 2 fs; p; d; f; gg as jN"; N#i�.
Our main tool to study the ground and excited states

is exact diagonalization. We use the Gaussian orbitals of
the trapping potential �nxnynzðx; y; zÞ as the one-particle

basis functions for the calculation, retaining all orbitals
that satisfy ðnx; ny; nzÞ � 5. The matrix elements of the

interaction in this basis set are evaluated numerically.
We construct the (N", N#) Slater determinants in this basis

set and retain the 10000 determinants with lowest non-
interacting energy to form a many-body basis set in which
to construct the Hamiltonian matrix. We diagonalize the
matrix to obtain the energy eigenstates fc mðaÞg. We can
connect the eigenstates at neighboring values of the
scattering length ai and aiþ1 with maximal overlap
hc mðaiÞjc nðaiþ1Þi to build up the band structure.
Ground state energy.—We first study the ground state

energy and symmetry of the atoms in a spherical trap with
!? ¼ !k. We start from the simplest interacting system

j1; 1i. At weak interactions both atoms occupy the �000
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orbital so that the ground state is spherically symmetric.
With increasing interactions the atoms adiabatically evolve
into a tightly bound molecule that retains the same spheri-
cal symmetry. The bound fermionic atoms can now be
regarded as a bosonic particle, but to expose this change
in the underlying particle statistics we must introduce a
second up-spin atom.

In the weakly interacting j2; 1i system the new up-spin
atom is forced by Pauli exclusion to enter one of the triply
degenerate (�100, �010, �001) orbitals possessing p-wave
symmetry. The next excited state shown in Fig. 1(a) places
that atom into a singly degenerate superposition of the
(�200, �020,�002) orbitals which will have s-wave symme-
try. Above this there is a ninefold degenerate g-wave state
(the ground p-wave state excited with center-of-mass
motion so that it has triple the degeneracy of the p-wave
state), then a fivefold degenerate d-wave state with zero
center-of-mass motion, and above that many other discon-
nected excited states. Previous analysis of this system was
performed in the center-of-mass frame so neglected the
g-wave state [29,30]. On entering the strongly attractive
regime an up and down-spin atom bind into a bosonic
molecule, removing the Pauli blocking, leaving the excess
up-spin atom in the �000 orbital. There must be a crossing
from the weakly interacting p-wave to the strongly interact-
ing s-wave regime. In Fig. 1(b) we plot the energy differ-
ence between the ground and first excited states. This shows
that the transition from p to s-wave symmetry occurs at
a¼0:46ak, a crossing phenomenon similar to that suggested

in Refs. [29–31]. In general the up and down-spin atoms
bind in pairs, leaving any excessmajority spins to fill orbitals
as if they were noninteracting, and adopting the symmetry
of that state. This can lead to a changing symmetry of the
ground state that betrays the innate inhomogeneous pairing.

Having seen the consequences of the ground state sym-
metry changing with the introduction of the extra up-spin

atom we now introduce a further up-spin atom giving
j3; 1i. The weakly interacting ground state carries
p-wave symmetry that adiabatically connects with the
strongly interacting ground state where the two excess
up-spin atoms also have p-wave symmetry. Therefore
Fig. 1(b) shows that this triply degenerate state is always
lower in energy than the next family of excited states so
the system should display inhomogeneous pairing at all
interaction strengths. We next examine the j4; 1i system.
In the weakly interacting regime the majority spins occupy
a full shell of (�100; �010; �001) orbitals so the ground
state has s-wave symmetry. In the strongly interacting
regime one of the up-spin atoms is bound to the down
spin at a ¼ 0:31ak, fragmenting the full shell into a

p-wave ground state. Finally, we verify that the j2; 2i
system has a spherically symmetric ground state at all
interaction strengths indicating that this balanced system
will not display inhomogeneous pairing. The first excited
states display d-wave symmetry. Although they are degen-
erate with the ground state in the noninteracting limit, the
energy difference grows rapidly with rising interactions.
When the energy difference exceeds @!k a p-wave state

(the s-wave state excited with center-of-mass motion)
becomes the new lowest excited state. This crossing
produces the kink at a � 1:2ak.
Inhomogeneous pairing.—In the presence of a popula-

tion imbalance the ground state symmetry can switch with
interaction strength, raising the possibility of inhomoge-
neous pairing. This motivates us to study the underlying
pairing density. We measure the pairing correlations with

the expectation value ��ðrÞ�ð0Þ ¼ hcy" ðrÞcy# ðrÞc#ð0Þc"ð0Þi
that explicitly conserves the number of atoms. In Fig. 2
we compare the isosurfaces of equal spin imbalance

hcy" c" � cy# c#i with the interaction strength independent

isosurface of equal pairing growth rate, dð ���Þ=daja¼0.
We start with j2; 1i atoms, the minimal system that

exhibits an inhomogeneous ground state. Without loss of
generality we place the upper majority spin atom into the
�001 orbital, fixing the excess density along the z axis as
shown in Fig. 2(a). Within first order perturbation theory

the ground state cy000"c
y
001"c

y
000#j0i couples to the transverse

states cy100"c
y
001"c

y
100#j0i and cy010"c

y
001"c

y
010#j0i. The induced

pairing is inhomogeneous as Pauli blocking prevents the

atoms from coupling to cy001"c
y
001"c

y
001#j0i. The pairing

correlations ��ðrÞ�ð0Þ / ðx2 þ y2Þ expð�!kr2Þ and excess

spin density �z2 expð�!kr2Þ yield the isosurfaces shown

in Fig. 2(a). The pairing is peaked in the regions of low
excess up-spin atom density. This distribution is similar to
that proposed for the low-density one-dimensional FFLO
state [32,33]. We can probe the emergence of inhomoge-
neous pairing correlations by studying the spherical
harmonics present in the pairing function in Fig. 2(g).
The ‘ ¼ 2 component grows rapidly with interaction
strength signifying the pairing increasing only within the

s
p

FIG. 1 (color online). (a) The energy bands of the j2; 1i
system, highlighting the p-wave state (blue dashed), s-wave
state (red solid), g-wave (green dots), d-wave (magenta dot-
dashed), and higher excited states in gray. (b) The difference
in energy between the two lowest eigenstates with increasing
number of atoms. Solid lines denote an s-wave ground state
and dashed a p-wave ground state. Different colors denote the
labeled states, with the same colors depicting the j2; 1i state in
both (a) and (b). The horizontal black dashed line delineates the
crossover between the two lowest eigenstates.
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torus, and the ‘ ¼ 4 component increases so that the
pairing can rise abruptly at the boundary between torus
and the excess majority spin density. The excess majority
spin mostly remains in the �001 orbital.

Now that we have studied the inhomogeneous pairing of
the j2; 1i ground statewe turn to reexamine the excited states
from Fig. 1(a). These are not only accessible through radio
frequency transfers, but, moreover, act as precursors of states
containingmore atoms sowill help develop our intuition.We
enumerate the three lowest excited states in Figs. 2(d)–2(f)
that all exhibit inhomogeneous pairing. The j2; 1is state in
Fig. 2(d) is formed by taking the up-spin atom from the�001

orbital and exciting it into the spherically symmetric linear
combination of the (�200,�020,�002) orbitals. The majority
spin atom lies in a shell at the node of the pairing density. The
j2; 1id state in Fig. 2(e) is formed by exciting an atom out of
the �000 orbital and into the ð�200 þ�020Þ=2��002 orbi-
tal. The excess spin now lies in a torus that defines the pairing
node. The j2; 1ig state Fig. 2(f) is formed by exciting j2; 1i

with center-of-mass motion in the x-y plane, thereby break-
ing the cylindrical symmetry. These excited states contain
low energy vacant orbitals (e.g., �000) into which we can
insert further atoms to form new ground states.
With our study of the minimal j2; 1i system complete we

now study systems containing more atoms. First, we exam-
ine the j3; 1i system. Figure 2(b) reveals that the majority
spins lie in the x-y plane focusing the pairing along the z
axis. The j4; 1i system has a full n ¼ 1 shell of excess spin
atoms. The pairing density is spherically symmetric, envel-
oped by the excess spin density. The conformation of the
nodal surface is commensurate with the number of excess
fermions. To verify this conjecture we first look at the j3; 2i
and j4; 3i systems. Although the occupied orbitals contrast
to the j2; 1i system, each has one excess spin fermion with
an identical pairing structure. Likewise the j4; 2i system
has an identical topology to the j3; 1i. The j3; 1i; j4; 2i;
j4; 1i states have no counterpart in the spectrum of the
j2; 1i excitations because they rely on the occupation of the
(�100,�010) orbitals that do not couple to the j2; 1i state so
to connect with the excited states we now turn to systems
containing more atoms.
In the j5; 1i system Fig. 2(d) the new atoms first fill

the (�100,�010) orbitals and then the final new atom enters
a linear combination of the (�200,�020,�002) orbitals, ren-
dering a spherically symmetric state. This can be regarded
as the j2; 1is state but with the (�100,�010,�001) orbitals
filled and so adopts the same topology. Likewise, the j5; 2i
system can be regarded as the j2; 1id state with the
(�000,�100,�010,�001) orbitals filled. This state with three
excess fermions notably has a different topology to the
j4; 1i state with equal imbalance due to the newly occupied
n ¼ 2 shell having greater degeneracy with atoms entering
the �110 orbitals that induce d-wave character. The ability
to build many-particle states out of the excited states of a
few-atom system illustrates the utility of studying the few-
atom systems to understand many-body states. In Fig. 3(b)
we connect to the macroscopic FFLO state by studying

FIG. 3 (color online). (a) The ground state for two up and one
down-spin atom in the trap !? ¼ 0:5!k with changing barrier

height V and interaction strength a. The blue shaded region
denotes the longitudinal ground state, the white area the trans-
verse state, and orange the molecular state. The red dashed line
denotes the longitudinal-transverse boundary predicted by per-
turbation theory. (b) The energy of a single down spin embedded
in N up-spin atoms compared with the infinite system size limit,
with kF defined from the noninteracting Fermi energy.

FIG. 2 (color online). (a)–(f) The isosurfaces of the pairing
density (positive: red; negative: green), and excess majority spin
density (blue mesh). (g) the angular spherical harmonic compo-
nents of the j2; 1i system where Rn‘ are the radial solutions
for principal quantum number n and orbital quantum number ‘,
and Ym

‘ denotes the spherical harmonic function with projected

angular momentum quantum number m. (h) shows the pairing
density (red solid) and excess spin density (blue dashed) in a
one-dimensional system.
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how the energy varies with system size, and compare to the
3D polaron limit that can be solved analytically [34]. With
more than eight atoms trapped the energy approaches the
infinite-body polaron limit, showing that the few-atom
system directly links to the macroscopic state.

Finally, we examine the pairing in a one-dimensional
system with !? ¼ 10!k. Starting again with j2; 1i the

pairing is concentrated at the center, forcing the excess
majority atom outwards. This configuration is analogous to
the j2; 1i in the spherical trap that we studied earlier,
projected onto the z axis. With further atoms present,

such as j3; 1i each excess up-spin atom sits at z �
� ffiffiffiffiffiffiffiffi

3=2
p

ak, with the pairing changing sign as it crosses

through a node at these points. This confirms our picture
of the majority spin atom defining nodes in the pairing
correlations, similar to that proposed for the low-density
FFLO state [32,33]. Though this one-dimensional system
is realizable, the spatial inhomogeneity would be difficult
to probe in experiment. Instead, we now return to the three-
dimensional system and exploit the state degeneracy to
propose an experimental observable.

Experimental observation.—Following the emergence
of inhomogeneous pairing we now take advantage of
the simple spatial variation of the pairing in the j2; 1i
FFLO state to propose an experimental observable. Two
parameters couple to the angular pairing oscillations: a
pancake trapping potential with !k >!? encourages the

unpaired majority spin atom into a doubly degenerate
transverse orbital (�100 or �010), whereas a central barrier
V expð�!Bz

2Þ favors occupation of the singly degenerate
longitudinal orbital (�001) that has a node over the barrier.
Strong inhomogeneous pairing attracts density towards the
energetically costly central barrier so to minimize that
density the system favors the occupation of the longitudi-
nal state. This transition provides a direct probe of the
inhomogeneous pairing.
We use both exact diagonalization and first order pertur-

bation theory to probe the boundary between the transverse
and longitudinal states. Starting from the noninteracting
states in the absence of the central barrier we include both
the interactions and the barrier through first order perturba-
tion theory to yield the estimates for the ground state energy

Longitudinal; singly degenerate
5

2
!k þ 3!? þ V

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
!k

!k þ!B

s �
2þ !k

!k þ!B

�
þ a

ak
!?

ffiffiffiffi
2

�

s �
3

2
� 4

ffiffiffi
2

p
�

V

!k þ!B

�

Transverse; doubly degenerate
3

2
!k þ 4!? þ 3V

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
!k

!k þ!B

s
þ a

ak
!?

ffiffiffiffi
2

�

s �
3

2
� 6

ffiffiffi
2

p
�

V

!k þ!B

�
:

(1)

Setting the two energies equal predicts a crossover at

V ¼ ð!B þ!kÞ3=2ð!k �!?Þ
!B

ffiffiffiffiffiffi
!k

p

þ 4ð!B þ!kÞ2ð!k �!?Þa
�3=2!k!2

Bak
: (2)

In Fig. 3(a) we study the behavior in a trap with ellip-
ticity !? ¼ 0:5!k and !B ¼ 5!k. In the noninteracting

system the crossover between longitudinal and transverse
states predicted by exact diagonalization is at V � 1:87!k
that is in good agreement with the perturbation theory
estimate V � 1:46!k. The critical barrier height falls

with rising interaction strength due to the inhomogeneous
pairing pulling density onto the central barrier and so
favoring the longitudinal mode that has a node over the
barrier. With spherically symmetric pairing this transition
would be independent of interaction strength so its gradient
exposes the inhomogeneous pairing. The transition could
be exposed by starting from four trapped atoms and tilting
the trap so that one atom escapes, with the other three
atoms entering the ground state. The tunneling rate, pro-
portional to ground state degeneracy, will be twice as large
for the transverse mode as the longitudinal, thus mapping
the boundary.

As demonstrated in Fig. 1 the atoms can bind into a singly
degenerate Bose-Einstein condensate with s-wave symme-
try. This gives the molecular ground state in Fig. 3(a). At
V ¼ 0 this occurs at ak=a ¼ 2:86, which is greater than the
ak=a ¼ 2:17 for the spherically symmetric system due to

the lower energy cost of occupying the transverse state. The
critical interaction strength is at a minimum at the boundary
between the transverse and longitudinal states at V � 1:2!k
since those two states are most unstable here. The transverse
state is more stable as the central barrier is reduced, whereas
the moleculewith density sited over the barrier becomes less
favorablewith increasing barrier height than the longitudinal
mode that has a node over the barrier. Systems containing
more atoms will display analogous phase behavior governed
by their symmetries that were studied earlier.
Discussion.—The few trapped fermions pose a nexus

between analytically tractable few-body physics and intrac-
table many-body systems. We have studied the imbalanced
superfluid whose ground state displays inhomogeneous
pairing. The pairing is analogous to the elusive LO state
with the unpaired majority spins residing along the nodes
of the pairing order. The j2; 1i atoms possess a simple pairing
topology that couples to the trap ellipticity and central barrier
that can be probed experimentally. The ground state of more
atoms can be understood in terms of the excited states of
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the j2; 1i system. Moreover, the system approaches the
infinite-body limit when more than eight atoms are trapped,
so our study has broad implications for the FFLO phase.
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