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We develop ultratransferable pseudopotentials for the contact interaction that are 100 times more
accurate than contemporary approximations. The pseudopotential offers scattering properties very
similar to the contact potential, has a smooth profile to accelerate numerics by a factor of up to 4,000,
and, for positive scattering lengths, does not support an unwanted bound state. We demonstrate
these advantages in a Diffusion Monte Carlo study of fermions with repulsive interactions, delivering
the first numerical evidence for the formation of a p-wave superconducting state.

PACS numbers: 71.15.Dx, 31.15.A-

Interparticle interactions are central to our under-
standing of correlated phenomena, but the ubiquitous
Coulomb and contact interparticle potentials diverge on
coalescence, impeding leading numerical methods. The
contact interparticle potential is realized in both ultra-
cold atomic gases and idealized screened electrons, mak-
ing it an ideal testbed for developing ultratransferable
pseudopotentials. Common approximations to the con-
tact interaction display incorrect variations in the scat-
tering phase shift with incident particle energy and can
harbor undesired bound states [1–9]. We develop a for-
malism for generating a bespoke pseudopotential for the
contact interaction that offers accurate scattering prop-
erties and has no superfluous bound states. These ad-
vantages allow us to deliver the first numerical evidence
for a p-wave superconducting instability in a fermionic
gas with repulsive interactions.

The contact interaction is characterized by a scattering
length a that parameterizes the variation of the scatter-
ing phase shift with incident energy. The contact inter-
action comes in three flavors: sufficiently deep to trap a
two-body bound state (a > 0), weakly attractive with no
bound state (a < 0), and repulsive (a > 0). Contem-
porary numerical simulations of both the bound state
and weak attractive interactions adopt a finite ranged
square well or Pöschl-Teller interaction. These simula-
tions have delivered crucial insights into the BEC-BCS
crossover [3, 10], Bose gases [4], and few atom physics [5–
7]. However, the finite range imbues the potential with
incorrect scattering properties. While reducing the range
of the potential alleviates this, it slows numerical calcu-
lations. The third category of contact potentials gives re-
pulsive interactions that drive itinerant ferromagnetism
in Fermi gases [1, 2, 8], a Tonks-Girardeau gas [4], and a
Bose gas [9]. The repulsive interaction is the first excited
state of the bound state potential so both have a > 0,
but in ultracold atomic gas experiments [11] the upper
branch is protected by a slow three-body loss process. To
simulate repulsive interactions the first option is to adopt
a finite-ranged attractive potential [1, 2]. However, to
avoid forming the bound state, the trial wave function
is restricted to the Hartree-Fock excited state solution

with no variational parameters, leading to a poor esti-
mate of the energy. Alternatively, one can adopt a repul-
sive top-hat potential [8] potential with no bound state.
However, this has a finite range greater than the scat-
tering length, resulting in an incorrect scattering phase
shift. The difficulty of simulating repulsive interactions
means that there are important open questions about
fermionic gases: is the ground state of a strongly interact-
ing fermionic system ferromagnetic [8, 12–18]; is the fer-
romagnetic transition first or second order; and whether
exotic phases that emerge around quantum criticality in-
clude a spin spiral [8], nematic phase [15, 19, 20], and
a counterintuitive p-wave superconductor [21]. The p-
wave superconductor was suggested by perturbation the-
ory [22–27] and has been observed in experiment [28–34],
but has never been seen by numerics.

We develop a general ultratransferable pseudopotential
for the contact interaction. We test its accuracy using the
exactly soluble system of two trapped atoms, verify the
first order itinerant ferromagnet transition, and finally
present the first numerical evidence for a p-wave super-
conducting instability.

DERIVATION OF THE PSEUDOPOTENTIAL

To construct the pseudopotential we study the two-
body problem: two fermions in their center-of-mass
frame with wavevector k ≥ 0 and angular momentum
quantum number `. The Hamiltonian in atomic units

(~ = m = 1) is −∇2

2 ψ + V (r)ψ = k2

2 ψ, with the contact

potential V (r) = 2πaδ(r) ∂∂r r [35]. The scattering states
are ψcont

k,` = sin[kr − δcont
` ]/kr, where δ` is the scattering

phase shift in angular momentum channel `. We seek
a pseudopotential that (i) reproduces the correct phase
shifts over the range of wavevectors 0 < k . 2kF, where
kF is the Fermi wavevector, (ii) supports no superfluous
bound states to be compatible with ground state meth-
ods and (iii) is smooth and broad to accelerate numerical
calculations. We first focus on positive scattering lengths
a > 0, with no bound state. We describe four families of
pseudopotentials: hard sphere, soft sphere (top hat), the
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FIG. 1. (Color online) (a) The pseudopotentials at kFa = 1/2
on the repulsive branch. UTP denotes the ultratransferable
pseudopotential. (b) The first five coefficients for the ultra-
transferable potential at kFa = 1/2. (c) The errors in phase
shifts for the repulsive branch at kFa = 1/2. (d) The errors
in phase shifts for the attractive branch at kFa = −1/2.

Troullier-Martins form of norm-conserving pseudopoten-
tials [36, 37] and the new ultratransferable pseudopoten-
tial.

The usual approach [1, 8] starts from the low energy
expansion for the s-wave scattering phase shift cot δ0 =
− 1
ka + 1

2kreff +O(k3) where reff is the “effective range” of
the potential. For a contact potential, reff and all higher
order terms are zero. Perhaps the simplest pseudopo-
tential is a hard sphere potential with radius a. This
reproduces the correct scattering length a, thus deliver-
ing the correct phase shift for k = 0. However, the hard
sphere has an effective range reff = 2a/3. Fig. 1(c) shows
that this causes significant deviations in scattering power
for k > 0.

To improve the scattering phase shift, Ref. [8] adopted
a soft sphere potential: V (r) = V0Θ(r − R), with V0

and R chosen to reproduce the correct scattering length
a = R(1 − tanh γ/γ) and effective range reff = R[1 +
3 tanh γ−γ(3+γ2)

3γ(γ−tanh γ)2 ] = 0, where γ = R
√

2V0. The first two

terms in the low energy expansion of the phase shift are
now correct, leading to a small reduction in phase shift
error in Fig. 1(c).

The two potentials considered so far display incorrect
behavior for larger wavevectors due to the focus on re-
producing the correct k = 0 scattering behavior. To im-
prove the accuracy we turn to the Troullier-Martins [36]
formalism developed for constructing attractive electron-
ion pseudopotentials. These pseudopotentials reproduce
both the correct phase shift and its derivative with re-
spect to energy at a prescribed calibration energy (when

constructing an electron-ion pseudopotential, this is the
bound state energy in an isolated atom [37–42]). By cal-
ibrating at the energy corresponding to the median in-
cident scattering wavevector k = kF, we reduce the er-
rors in the scattering phase shift over a broad range of
wavevectors. This delivers the pseudopotential shown in
Fig. 1(a) that is smooth, leading to improved numerical
stability and efficiency. Fig. 1(c) demonstrates that this
potential is exact at the calibration wavevector k = kF

and delivers a marked decrease in phase shift error across
all wavevectors.

The three potentials deliver a significant progression in
accuracy. The hard sphere potential reproduces the cor-
rect scattering behavior at k = 0. Both the soft sphere
and Troullier-Martins potential are transferable: the for-
mer producing correct scattering around k = 0 and the
latter around k ∼ kF The significant improvement de-
livered by the Troullier-Martins potential encourages us
to develop the formalism to propose an ultratransferable
pseudopotential that produces accurate phase shifts over
all of the wavevectors occupied in a Fermi gas.

To develop ultransferable pseudopotentials we con-
tinue to focus on the contact potential, though the
methodology can be readily generalized to other interpar-
ticle interactions. We construct a pseudopotential that
is identical to the contact potential outside of a cutoff
radius rc, but inside has a continuous first derivative at
both r = 0 and r = rc,

V (r)

EF
=





(
1− r

rc

)2
[
v1

(
1
2 + r

rc

)
+

Nv∑

i=2

vi

(
r

rc

)i]
r≤rc

0 r > rc ,

with Nv = 9. We choose the cutoff radius to correspond
to the first anti-node of the true wavefunction By choos-
ing a cutoff that is beyond the first node in the wavefunc-
tion, we guarantee that the pseudopotential will not har-
bor a bound state, as demonstrated in Fig. 1(a). We cal-
culate the scattering solution ψPP

k,` (r) of the pseudopoten-

tial numerically to determine the phase shift δPP
` (k(k)).

The difference in the scattering phase shift δ` of the po-
tentials is characterized by the mean squared error in the
phase shifts at the cutoff radius,

〈(δPP
` − δcont

` )2〉 =

∫ 2kF

0

[
δPP
` (k)− δcont

` (k)
]2

dk ,

that is integrated over all wavevectors 0 ≤ k ≤ 2kF of
interest. The integrand can be convolved with a density
of states to emphasize k values of interest. We seek the
variational parameters {vi} that minimize the deviation
〈(δPP

` − δcont
` )2〉 to determine the pseudopotential that

delivers the best approximation for the contact poten-
tial. As demonstrated in Fig. 1(c), this potential deliv-
ers an error in δ0 of less than 10−3 for all wavevectors
0 ≤ k ≤ 2kF found in a Fermi gas, corresponding to an
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improvement of two orders of magnitude over previously
used pseudopotentials.

The pseudopotentials constructed will have finite scat-
tering amplitude in the p-wave and higher angular mo-
mentum channels. The contact potential, by contrast,
scatters only in the s-wave channel |s〉. This can be
solved by using a non-local pseudopotential [43, 44] V̂ =
|s〉V (r)〈s|, where 〈r|s〉 = Y0

0(r), with the spherical har-
monic Y0

0 centered on either of the interacting particles.
This potential only acts on the s-wave component of the
relative wavefunction. Additional accuracy could also be
gained by using different projectors for different energy
ranges [45, 46].

Attractive branch: We can use a similar procedure to
derive pseudopotentials for the attractive branch a < 0.
For the attractive case, the cutoff can be arbitrarily re-
duced to generate a potential that tends to the contact
limit, at the cost of computational efficiency. For exam-
ple, in Monte Carlo simulations, the sampling efficiency
is approximately proportional to r3

c . In Fig. 1 we adopt
a cutoff rc = 1/2kF, and compare to the square well po-

tential with cutoff rc = 0.01
3
√

3π2/kF in Ref. [3]. Both
the Troullier-Martins pseudopotential and the ultratrans-
ferable pseudopotential have an average error approxi-
mately 10 times smaller than the square well potential,
but their larger cutoff allows them to be sampled 4,000
times more efficiently.

Bound state: To construct a pseudopotential for the
bound state (corresponding to a > 0), we follow the
Troullier-Martins prescription [36]. We calibrate the
pseudopotential at the binding energy E = −1/2a2. The
cutoff is constructed in the same manner as for the at-
tractive branch, delivering a similar improvement in effi-
ciency.

ATOMS IN A TRAP

We have developed a pseudopotential that delivers the
correct scattering phase shift for an isolated system. To
test the pseudopotential we turn to an experimentally re-
alizable configuration [47, 48]: two atoms in a spherical
harmonic trap with frequency ω and characteristic length
d = 1/

√
ω. For all three types of interaction shown in

Fig. 2(d) this system has an analytical solution [35] that
we can benchmark against, forming an ideal test in an
inhomogeneous environment. Moreover, the exact solu-
tion extends to excited states, allowing us to test the
performance of the pseudopotential across a wide range
of energy levels to provide a firm foundation from which
to study the many-body system.

Ground state: We first compare the pseudopotential
estimates of the ground state energy to the exact an-
alytical solution [35]. For the repulsive and attractive
branches the hard/soft sphere potentials deliver ∼ 1% er-
ror in the energy, whilst both the Troullier-Martins and

−0.5 −0.4 −0.3 −0.2−d/a
10−5

10−4

10−3

10−2

R
M

S
E

rr
or

in
E
/ω

Hard sphere

Soft sphere
Troullier

UTP
Ground state

(a) repulsive

0.2 0.3 0.4 0.5−d/a

10−4

10−3

R
M

S
E

rr
or

in
E
/ω

Square well

Troullier
UTP

Ground state

(b) attractive

−0.15 −0.1 −0.05 0
−d/a

10−4

10−3

10−2

10−1

E
rr

or
in
E
/ω

Square well

Troullier

(c) bound

−0.4 0 0.4
−d/a

0

5

10

E
/ω

Emax

bound

repulsive attractive
(d) bands

−3 −2 −1
−1/kmaxa

1 2 3
−1/kmaxa

−1 −0.5 0
−1/kmaxa

−2 0 2
−1/kmaxa

FIG. 2. (Color online) Mean squared error in total en-
ergy for two atoms in a harmonic trap, for all bands below
Emax (solid lines). (a) The error for repulsive interactions
(kFa > 0). UTP denotes the ultratransferable pseudopoten-
tial. The dashed line denotes the error in the ground state
energy with the ultratransferable pseudopotential. (b) The
pseudopotential error for attractive interactions (kFa < 0).
(c) The pseudopotential error in the bound state energy. (d)
The band diagram for two atoms in a harmonic trap, calcu-
lated following Ref. [35].

ultratransferable pseudopotentials (shown in Fig. 2(a,b))
are significantly more accurate with a ∼ 0.01% error. Fi-
nally we examine the bound state energy in Fig. 2(c).
Both the square well and Troullier-Martins formalism
give the exact ground state energy for two atoms in isola-
tion. However, the trapping potential introduces inhomo-
geneity, so the square well potential gives a ∼ 10% error
in the ground state energy, whereas the Troullier-Martins
pseudopotential gives a ∼ 0.01% error. This affirms the
benefits of using a pseudopotential that is robust against
changes in the local environment. The success of the
Troullier-Martins and ultratransferable formalism at de-
scribing the ground state is all the more significant con-
sidering these pseudopotentials aim to describe the cor-
rect scattering properties over a range of energies. We
would therefore expect them to perform even better when
modeling the excited states of the trap.

Excited states: We now turn to examine the predic-
tions for the excited states in the repulsive and attractive
branches. Due to the shell structure, the excited states
of a few-body system are related to the ground state of
a many-body system [7], allowing us to probe the per-
formance expected from the pseudopotential in a many-
body setting. We consider states up to a maximum en-
ergy Emax = 7.5~ω, corresponding to 112 non-interacting
atoms in the trap. In Fig. 2(a,b) the Troullier-Martins
pseudopotential has a mean squared error averaged over
all bands below Emax that is between 10 and 100 times
lower than existing pseudopotentials. The ultratransfer-
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FIG. 3. (Color online) The magnetic phase diagram and emer-
gence of p-wave superconducting order. The error bars on the
magnetization line are smaller than the markers. Labels show
the predicted interaction strength for the onset of magneti-
zation and entry into the fully polarized state from previous
works [1, 8, 12, 17, 56, 57].

able pseudopotential is a further factor of 2 more accu-
rate. Additionally, when modeling the attractive branch,
the Troullier-Martins and the ultratransferable formal-
ism are 4,000 times more efficient, due to their larger
cutoffs.

REPULSIVE FERMIONS

Having verified that the pseudopotentials reproduce
the correct scattering phase shift and bound state energy
for two harmonically trapped atoms, we now exploit their
accuracy to study two unsolved questions in many-body
ferromagnetic metals tuned near quantum criticality: the
nature of the ferromagnetic phase transition and presence
of p-wave superconducting correlations.

Quantum Monte Carlo: We use fixed-node Diffusion
Monte Carlo (DMC) [49] implemented in the casino
code [50], with a trial wavefunction Ψ = eJD↑D↓, where
Dα denotes a Slater determinant of Nα plane waves. The
Jastrow factor is taken to be

J=
∑

j 6=i
α,β∈{↑,↓}

(
1− |ri−rj |

Luαβ

)2

uαβ(|ri−rj |)Θ(Luαβ−|ri−rj |),

where uαβ is a polynomial whose parameters we opti-
mize in a Variational Monte Carlo (VMC) calculation
and Luαβ is a cutoff length [51]. We model spin polar-
ized systems by performing calculations for N↑ = 81
and N↓ ∈ {81, 57, 33, 27, 19, 7, 1} that correspond to filled
shells. This guarantees that the trial wavefunction is an
eigenstate of the total spin operator Ŝ2 and the spatial
symmetry operators of the cubic lattice.

We use a backflow transformation [2, 52] in the con-
struction of the orbitals that enter the Slater determi-
nant, with the replacement riσ → riσ +

∑ j 6=i
α,β∈{↑,↓}(ri −

rj)η
αβ
ij (|ri − rj |) where ηαβij (r) = (1 − r/Lηαβ)2Θ(Lηαβ −

r)pαβ(r), pαβ is a polynomial whose parameters are op-
timized in VMC, and Lηαβ is a cutoff length. We reduce

finite size effects by twist averaging [53–55] and correct
the non-interacting kinetic energy of the finite sized sys-
tem with that of the corresponding infinite system [1].
Ferromagnetic phase transition: In Fig. 3 we observe a

first order phase transition to a partially polarized state
at kFa = 0.71, markedly lower than previous DMC pre-
dictions of kFa ∼ 0.85 [1, 8]. The system becomes fully
polarized at kFa = 1.89, close to the theoretical predic-
tion of 1.87 [56, 57]. This is significantly larger than the
values calculated previously using DMC [1, 8], demon-
strating the quantitative benefits of using a high fidelity
pseudopotential. The presence of the first order transi-
tion is consistent with theory [8, 14, 16, 17] and with the
ferromagnetic transition seen in experiments on heavy
fermion materials [58].
P-wave superconductivity can be understood by con-

sidering two up-spin electrons in a fermionic gas with
repulsive interactions, each surrounded by a fluctuating
magnetic polarization cloud. As the electrons coalesce
the magnetic fluctuations (that drove the first order fer-
romagnetic transition) reinforce to create an effective at-
tractive interaction, inducing p-wave superconducting or-
der [34, 59]. The p-wave superconducting state has been
observed in experiments on ferromagnetic superconduc-
tors [28–34], and has been modeled by a contact interac-
tion in perturbation theory [22–27], but has never been
observed in numerics. Equipped with a pseudopotential
that reproduces the contact interaction with high fidelity
and whose broad profile leads to improved efficiency, we
search for p-wave superconducting order.

The p-wave superconducting order is defined by the
order parameter ∆k =

∑
k′ Vkk′〈ck↑c−k↑〉. This must be

recast into an operator in the position representation and
projected onto the p-wave channel. Effecting this trans-
formation results in the projection of the off-diagonal
long-range order in the two-body reduced density matrix
onto the p-wave channel [10, 60, 61]

〈|∆p|2〉=−
(4πkFa)2

81Ω2
lim
R
→∞

∫∫
r·r′〈c†r

2
c†−r

2
cR+r′

2
cR−r′

2
〉drdr′,

where Ω is the simulation cell volume. The expec-
tation value is zero for the Slater determinant trial
wavefunction D↑D↓ with no electron-electron correla-
tions. However, if we insert the full trial wavefunction
ψ = eJD↑D↓ into the expectation value and expand
in the limit of small electron separation, we find that
〈|∆p|2〉 ≈ 2103−155−27−1(kFc)

8u↑↑(0), connecting the
superconducting correlations to the up-spin correlation
term in the Jastrow factor. This verifies that the trial
wave function has the variational freedom to exhibit a
superconducting instability.

In Fig. 3 we show the emergence of the p-wave super-
conducting order parameter with increasing interaction
strength. The p-wave superconductor may be enhanced
in the partially polarized phase [27], but is destroyed in
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the fully polarized state as there can be no magnetic fluc-
tuations. The delicacy of the superconducting order re-
quires a high-fidelity pseudopotential. The emergence
of the p-wave superconducting order provides the first
verification of the magnetic fluctuations theory valid at
high interaction strengths, confirming the NMR measure-
ments on UCoGe [34].

DISCUSSION

We have developed a high fidelity pseudopotential
for the contact interaction. The pseudopotential is ul-
tratranserable, delivering accurate scattering properties
over all wavevectors 0 ≤ k ≤ 2kF in a Fermi gas and
its smoothness accelerates computation. This pseudopo-
tential allowed us to characterize the first order itinerant
ferromagnetic transition and present the first computa-
tional evidence for a p-wave superconducting state.

The performance and portability of the pseudopoten-
tial makes it widely applicable across first principles
methods including VMC, DMC, coupled cluster theory,
and configuration interaction. The formalism developed
can also be applied more widely in scattering problems in
condensed matter to develop pseudopotentials, including
the repulsive Coulomb interaction and dipolar interac-
tions.

The authors thank Stefan Baur, Andrew Green, Jes-
per Levinsen, Gunnar Möller, Michael Rutter, and Lukas
Wagner for useful discussions, and acknowledge the finan-
cial support of the EPSRC and Gonville & Caius College.
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