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Quantum Monte Carlo study of the two-dimensional ferromagnet
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We present quantum Monte Carlo calculations that probe the paramagnet-ferromagnet phase transition in a
two-dimensional Stoner Hamiltonian. With a screened Coulomb interaction we observe a first-order ferromagnetic
transition for short screening lengths, and a second-order transition with a longer screening length, accompanied
by a rising critical interaction strength. Finally, we discuss the consequences of our results for an ultracold atomic
gas with finite ranged interactions.
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I. INTRODUCTION

Layered systems that display magnetic correlations have
emerged as an important test bed of strongly correlated
physics. The Stoner Hamiltonian represents the simplest
possible metallic system that undergoes a ferromagnetic
transition. Since a mean-field analysis1 predicts a second-order
transition, in the vicinity of the low temperature transition
Hertz2 predicted that quantum fluctuations would drive critical
behavior. However, it has recently been predicted that quantum
fluctuations are even stronger than envisaged by Hertz and
drive phase reconstruction through a first-order ferromagnetic
transition,1,3–7 consistent with the phase transition observed
in the quasi-two-dimensional systems Sr3−xCaxRu2O7,8,9

Sr2RuO4,10 LaxSr2−xRuO4,11 Ca2RuO4,12 and UGe2.13–15 The
importance of the quantum fluctuations in driving this phase
reconstruction motivates a careful theoretical analysis of
the Stoner Hamiltonian. However, analytical studies1,3–7 of the
magnetic transition rely on a perturbation theory in the interac-
tion strength, whereas in reality the interactions are strong and
the quantum fluctuations dominant. To probe the phase tran-
sition in the nonperturbative regime we perform and present
the first quantum Monte Carlo (QMC) calculations of the two-
dimensional itinerant ferromagnet with short-ranged interac-
tions. We complement this with the first analytical study of the
ferromagnetic transition in two dimensions with a screened
Coulomb interaction that allows us to be the first to calculate
the dependence of the tricritical point temperature on screening
length. The QMC calculations employ a fixed node approxima-
tion, tempered by backflow corrections, so should complement
and improve upon the accuracy of the analytical findings.

An ultracold atomic gas could be an attractive alternative
realization of the Stoner Hamiltonian. Recent experiments
on the three-dimensional system,16 and polaron systems17,18

have delivered some evidence for ferromagnetic ordering,19–21

though a competing loss process provides an alternative
explanation.22,23 Accurate QMC calculations that pin the tran-
sition down should help guide future experiments that could
realize a Hamiltonian analogous to the Stoner system.1,7,24–26

The theoretical and experimental study of the idealized two-
dimensional ultracold atomic gas also presents an opportunity
to shed light on high temperature superconductivity where an-
tiferromagnetism competes with the d-wave superconducting
phase.1

In this paper we present QMC calculations to analyze
the paramagnet-ferromagnet transition in two dimensions. To

connect to the solid state the QMC calculations are performed
first with the screened Coulomb interparticle potential and
later the results are compared to the square well potential. Both
interparticle potentials are characterized by a range parameter
that we vary to gauge the consequences of screening in the
solid state, and the interaction effective range in the cold
atom gas. Combining our QMC results with a complementary
analytical order-by-disorder approach allows us to derive
the phase diagrams shown in Fig. 1 at finite temperatures.
The phase diagram shows that the paramagnet-ferromagnet
transition reverts from first to second order on increasing the
screening length, and the corresponding critical interaction
strength increases. The introduction of a finite interaction
range with kFb > 0 increases the critical interaction strength,
and lowers the tricritical point temperature to be in line with
experimental values. Finally, we adapt our formalism to assess
the opportunity to observe ferromagnetic correlations in an
ultracold atomic gas.

II. FORMALISM

To model the ferromagnet we focus on the modified Stoner
Hamiltonian,

Ĥ =
∑
p,σ

εpn̂pσ +
∫ ∫

dr↑dr↓g(r↑ − r↓)n̂r↑↑n̂r↓↓, (1)

where εp = p2/2 is the dispersion, npσ is the fermion
occupancy in momentum space, nrσ in real space, spin σ ∈
{↑,↓}, and we adopt atomic units with h̄ = m = 1 throughout.
To simulate the interparticle repulsion we use a screened
Coulomb interaction parametrized as g(r) = ge−r/b/2πbr

acting between opposite spin particles separated by a distance
r . It is characterized by a screening radius b and interaction
strength g. To validate our results we also study the square
potential of radius R, g(r) = gθ (R − r)/πR2 with Heaviside
function θ , whose interaction strength and screening parameter
are related to the screened Coulomb interaction through a
momentum-space expansion.27 The interparticle potentials
are defined so that they have the simple momentum space
forms gq = g/

√
1 + b2q2 and g(1 − R2q2/8), respectively.

This allows them to be used within our analytical formalism.
These definitions mean that the ferromagnetic transition in the
mean-field approximation emerges at the critical interaction
strength gMF = 2π . To evaluate the energy of the electrons
we employ two complementary techniques, a quantum Monte
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FIG. 1. (Color online) The phase diagram for the system from
the paramagnetic to ferromagnetic phase (shaded gray). The red solid
line shows the first-order ferromagnetic transition and the dashed line
the second-order transition with the tricritical point highlighted by the
blue dot. The three lines denote boundaries with a screening length
of k2

Fb
2 = 0, k2

Fb
2 = 0.2, and k2

Fb
2 = 0.4.

Carlo calculation limited only by a fixed node approximation,
and an analytical evaluation of the free energy derived by a
functional integral formalism. The mechanics of both methods
are outlined below before we study the resulting phase
diagrams.

A. Quantum Monte Carlo formalism

To seek and calculate the ground state of the Hamiltonian
we perform QMC simulations with the code CASINO.28 This
method optimizes a trial wave function at zero temperature,
and finds the exact ground state subject to the nodal surface of
the wave function being fixed. The approach is a refinement of
that used in previous studies of itinerant ferromagnetism.6,29–34

We use a variational wave function ψ = e−J D that is a
product of a Slater determinant D, which takes full account
of the fermion statistics and includes further electron-electron
correlations through a Jastrow factor J . The QMC simulations
comprise two stages: First in variational Monte Carlo (VMC)
the ground-state energy was minimized by varying the param-
eters in the Jastrow factor; secondly diffusion Monte Carlo
(DMC) starts from the VMC wave function, and treats the
Schrödinger equation as a diffusion equation to project out the
exact ground state subject to a fixed node approximation.

The Slater determinant D = det({ψk∈kF↑ ,ψ̄k∈kF↓}) consists
of plane-wave orbitals ψk(r) = exp(ik · r) whose momenta k
satisfy periodic boundary conditions in the square simulation
cell, and lie within the up/down spin Fermi surfaces kFσ .
With a square simulation cell, to ensure that within VMC
we have a real-valued wave function and that the Fermi
surface is circular, the number of states must correspond to
closed shells containing Nσ = {1,5,9,13,21,25,29,37,45,49}
electrons, thus constraining us to discrete values of the
magnetization. For computational efficiency we factorize the
Slater determinant into up- and down-spin components,35 so
D = det({ψk∈kF↑}) det({ψ̄k∈kF↓}). Provided that the orbitals of
the minority spin state are the lowest energy orbitals of those
in the majority spin state,36 this is the state with total spin
s = sz = (N↑ − N↓)/2.

The Jastrow factor, J ({ri}), accounts for electron-electron
correlations. It has the general form,

J ({ri}) =
N−1∑
i=1

N∑
j=i+1

u(rij ) + p(rij ) , (2)

where the summation over indices {i,j} cover all N = N↑ + N↓
electrons, the electron separation is rij = ri − rj , and rij =
|rij |. The Jastrow factor includes the polynomial expansion in
electron-electron separation proposed in Ref. 37:

u(rij ) = (L − rij )3�(L − rij )

×
[
α0 + rij

(
3α0

L
− 	ij

L3

)
+

Nu∑
l=2

αlr
l
ij

]
, (3)

chosen so that it satisfies the Kato cusp conditions at rij = 0,
is zero beyond the cutoff length L imposed by the Heaviside
function �, 	ij = 1/4 for equal spin electrons, and 	ij = 1/2
for opposite spins, and contains Nu = 8 variational parameters
{αl}. The cutoff length L was chosen to be the largest circle that
could be inscribed in the simulation cell. The Jastrow factor
also includes a plane-wave expansion,

p(rij ) =
Np∑

A=1

aA

∑
G+

A

cos(GA · rij ), (4)

where the {GA} are the reciprocal lattice vectors of the
simulation cell belonging to the Ath shell of vectors under
the full symmetry group of the Bravais lattice, and the
superscript “+” means that if +GA is included in the sum
then −GA is excluded. The summation over A covers Np = 8
shells, with corresponding variational parameters {aA}. To
broaden the freedom of the variational wave function we
also include backflow corrections.38 These substitute the
electron coordinates ri in the Slater determinant a new set of
collective coordinates xi = ri + ξ i({rj }) where the backflow
displacement of electron i is ξ i given by

ξ i =
N∑

j �=i

rij

(
1 − rij

L

)3

�(L − rij )
Nη∑
k=0

ckr
k
ij , (5)

where L is the cutoff length, Nη = 7 the expansion order, and
{ck} the variational parameters. The inclusion of the backflow
corrections allows the nodal surface of the wave function to
shift and therefore relax the fixed node approximation. To
seek the ground state the variational parameters of the trial
wave function were numerically optimized within VMC by
minimizing the total VMC energy.39 The optimized VMC
wave function was used as the trial state for the DMC
calculation.

The DMC method35 simulates a population of walkers
whose evolution is driven by the imaginary time Schrödinger
equation to project out the ground-state component of the
VMC wave function. The walk is taken in a series of discrete
time steps, with walkers branching or annihilating according
to the local energy. The choice of time step, the control of the
walker population, and the system size can each introduce
errors into the final prediction of the ground-state energy.
We therefore now address how to minimize each source of
uncertainty in turn.
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Time step. One can propagate forwards in time exactly by
using Green’s function Monte Carlo40–47 but unfortunately the
method is computationally expensive.28,35 Therefore here we
employ an approximate Green’s function that would become
exact in the limit of short time steps τ for the walker evolution.
However, the computational effort required to achieve a given
uncertainty in the prediction for the ground-state energy
increases as 1/τ , ruling out the use of infinitesimal time
steps in practice. Therefore, where high accuracy is required,
we use two different finite time steps {τi} and extrapolate to
τ = 0 to obtain the ground-state energy. Tests revealed that the
time-step error had entered the linear regime at τ < 0.01 (at a
Wigner-Seitz radius rs = 1). Here to minimize the uncertainty
in the extrapolate we followed the prescription of Lee48 and
ran simulations with time steps τ = 0.01 and τ/4 = 0.0025
for relative durations of 1:8, respectively, and then finally
extrapolated to τ = 0.

Population control. To ensure that the population control
bias is negligible in all runs the target population exceeded
2000.49 The number of equilibration steps discarded during the
equilibration phase of each DMC calculation was set so that
the root-mean-square distance diffused by a typical electron
exceeded the simulation cell size.

System size. The VMC and DMC simulations must be
performed in a finite-sized simulation cell that is periodically
repeated to create an effectively infinite system. However,
using the finite-sized simulation cell introduces errors into
the final prediction for the energy. The error in the estimated
energy due to the finite-sized simulation cell can be divided
into three components: single particle kinetic energy, Hartree
energy, and exchange-correlation energy. The error in the
kinetic energy arises because of the approximation of the
circular Fermi surface by the discrete set of k vectors of
the closed shells within the simulation cell. As the system
is enlarged the k-vector grid becomes more fine resulting in
abrupt changes in the kinetic energy. The use of a nonzero
simulation cell Bloch wave vector ks that causes some k vectors
to lie outside of the Fermi surface, and others within can lead to
a dramatic reduction in the finite-size error, with the optimal
being the Baldereschi point.50 However, it is even better to
take an average expectation over all Bloch vectors ks within
the first Brillouin zone.49 We adopted the most optimal strategy
which is to average over a uniform grid of twists (we use 1000
points) centered on the Baldereschi point of the simulation
cell Brillouin zone.49 The Hartree energy is negligible due to
the short-ranged nature of the interaction whose maximum
exponential decay length is 1/20 of the typical simulation
cell size. The final contribution to the finite-sized error
is due to long-range two-body corrections. The change in
kinetic energy can be encapsulated by the Chiesa-Holzmann-
Martin-Ceperley approximation.51 It has been shown that in
two dimensions the scaling with long-ranged interactions is
∼N−5/4 whereas the with short-ranged interaction such as
our screened Coulomb interaction the scaling is expected to
be ∼N−2.34,49 We also note that it has been found that other
expectation values such as magnetic susceptibility can suffer
more from finite-size effects, but here we focus only on the
ground-state energy.52

To gauge the scale of the finite-size error we ran tests on a
paramagnetic system with the screened Coulomb interaction

10−4

10−3

10−2

10−1

100

0.01 0.1 1

|Δ
E
|/

µ

1/N

k = 0

Twist aver
age

d∼ 1/N
2

FIG. 2. (Color online) The error in energy �E for the k = 0
(blue) and twist averaged (red) calculations with system size (N ) for
the screened Coulomb potential with b = 0, g/gMF = 0.5. The red
dotted line shows the ∼1/N2 scaling. The green dashed line shows the
energy resolution required to determine the order of the ferromagnetic
transition.

with b = 0 and g/gMF = 0.5 and vary the system size by
changing the number of electrons N . Figure 2 shows that
twist averaging delivers an error in the energy (determined
against a 1/N2 extrapolation to the infinite-sized system at
1/N = 0) that is over an order of magnitude smaller than
that from taking just the single result calculated at k = 0.
The scaling 1/N2 appears similar to that found in a previous
two-dimensional study with short-ranged interactions.34 For
the typical system size used 2/N < 0.02 the finite-sized error
is almost two orders of magnitudes smaller than the smallest
energy scale �E ≈ 0.012 that we will need to resolve the
features of the phase transition [see Figs. 3(a) and 3(b)]. For
large magnetization the energy associated with the minority
spin species will have a finite-size correction that scales as
1/N2

minority but since that species now makes only a small
contribution to the overall energy it is beyond the order needed.
Therefore twist averaging ensures that finite-sized errors are
inconsequential when analyzing the phase diagram. Finally
we note that all of our twist-averaged energies are always
slight over estimates of the true energy since the single-particle
kinetic energy k2/2 is a convex function and the occupied k
space is a convex polyhedron.49

Changing polarization. Previous studies of 3He have
established that Slater-Jastrow wave functions overestimate
the unpolarized state energy, thus favoring the ferromagnetic
state. Including many-body backflow corrections can help
reduce the energy of the unpolarized state to better align
with experiment.53,54 Here we include two-atom backflow
corrections, that for short-ranged interactions have previously
been found to have a relatively small impact in the ground-state
energy versus that for long-ranged interactions,34,55 indicating
that the QMC bias towards unpolarized states is less for
shorter-ranged interactions. However, we also note that an
alternative calculation on a lattice with a smaller fixed node
bias indicates that the ferromagnetic transition is infinite order
rather than first order.56
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FIG. 3. (Color online) (a) and (b) Energy bands as a function of
magnetization M at the interaction strengths shown in (c) and (d)
for the screened Coulomb potential (the lowest band is the weakest
interaction strength). The red points highlight the minimum point in
each energy band. The error bars are approximately the line width.
(c) and (d) Magnetization as a function of interaction strength across
the transition. The left-hand plots are at k2

Fb
2 = 0, and the right-hand

plots at k2
Fb

2 = 0.2.

B. Analytical formalism

The itinerant ferromagnet has previously been analyzed
using a functional integral formalism. This will provide
a useful complementary tool to study the ferromagnetic
transition. The formalism calculates the quantum partition
function from a coherent state field integral,

Z =
∫

Dψexp[

⎡
⎣−

∑
p,σ={↑,↓}

ψp,σ (−iω + ξpσ )ψp,σ

−
∑

p↑,p↓,q

g(p↑ − p↓)ψp↑−q/2,↑

×ψp↓+q/2,↓ψp↓−q/2,↓ψp↑+q/2,↑

⎤
⎦ , (6)

where the field ψ describes a two-component Fermi gas. We
now decouple the quartic interaction term with a Hubbard-
Stratonovich transformation into the full vector magnetiza-
tion φ and the density channel ρ.7 This is the simplest
decoupling scheme that maintains rotational spin invariance
and yields the correct Hartree-Fock equations.57,58 With the
action now quadratic in the Fermionic degrees of freedom we
integrate them out to recover the quantum partition function
Z = ∫

DφDρ exp(−S) with the action given by

S = Tr[φĝφ − ρĝρ]

− Tr ln[(∂̂τ + p̂2/2 − μ + ĝρ)I − ĝφ · σ ].

Here we have employed the operator form of the interparticle
potential ĝ. We adopt M and ρ0 as the putative saddle point
values of the fields φ and ρ, and then expand to quadratic
order in the fluctuations in those fields about the assumed
saddle point. This allows us to integrate out the fluctuations in
the magnetization and density channels while keeping terms
up to second order in the interaction strength.6,7,59 This yields
the free energy,7

F =
∑
p,σ

p2

2
npσ +

∑
p↑,p↓

g(0)np↑↑np↓↓

+
∑

p1+p2=p3+p4

g2(p1 − p3)
np1↑np2↓(np3↑ + np4↓)

ξp1↑ + ξp2↓ − ξp3↑ − ξp4↓
,

(7)

where the first term corresponds to the kinetic energy
[with a Fermi distribution npσ = 1/(1 + eξpσ /T ), ξpσ = p2/

2 − μ − σgM , and T is the temperature], the second is the
mean-field contribution of the interactions, and the third higher
order interaction effects. The first two terms would be delivered
by the standard Stoner mean-field theory, and the final term is
attributed to fluctuation corrections.7 We have opted, without
loss of generality, to set the quantization axis along the
direction of the magnetization. This expression for the free
energy remains a function of the magnetization and density,
that can now be determined by minimizing the free energy with
respect to M and ρ, thereby fulfilling our premise that these are
the saddle point values. Since the Fermi distributions have a
temperature dependence we can use the formalism to not only
study T = 0, but also the phase behavior at finite temperature.
The formalism applies not only at zero temperature, but also
at finite temperature, thus allowing us to map out the entire
phase diagram.

The screened Coulomb interaction in momentum space
is g(p) = g/

√
1 + b2p2. We have included the effect of

finite ranged interactions into the free energy following the
prescription in Ref. 59, where it was applied to a three-
dimensional system. The mean-field term interaction strength
is independent of momentum exchange so is left unaffected
by the screening length b. In the fluctuation correction term
the denominator means that dominant contributions to the
momentum summation arise at |p1 − p3| = √

2kF
6,59 so that

we can simply adopt this fixed value within the interaction
g(p1 − p3) 	→ g(

√
2kF), and therefore in the presence of

screening the fluctuation correction term is simply rescaled
by a factor of 1/(1 + 2k2

Fb
2)2.6,59 Here we use the definition

kF = 3
√

3π2(n↑ + n↓) where nσ is the density of the electrons
with spin σ . Following this rescaling, the ground-state magne-
tization can again be extracted by minimizing the free energy
with respect to magnetization.

III. RESULTS

With both the quantum Monte Carlo and analytical formal-
ism in place we are well positioned to study the emergent
phase diagram. We first focus on the screened Coulomb
potential relevant for the solid state, before looking at the cold
atom gas.
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A. Solid state

We first study the screened Coulomb interaction relevant
for the solid state. With a short-ranged interaction kFb � 1,
the Fourier transform is momentum independent so we recover
the contact interaction limit. We performed DMC calculations
to determine the ground-state energy for several different
values of magnetization and interaction strength, plotting the
energy bands in Fig. 3(a). The minimum in each band reveals
the magnetization at that interaction strength. With rising
interaction strength the magnetization jumps from zero to
M ≈ 0.45, characteristic of a first-order transition. This gives
the magnetization with interaction strength curve in Fig. 3(c)
that demonstrates not only the first-order transition, but how
the magnetization subsequently grows into the fully polarized
state. The prediction of a magnetic transition at g/gMF = 0.57
is in good agreement with the Eq. (7) prediction of a first-order
transition at g/gMF = 0.51, that was also found in a previous
analytical study.1

We next repeat the procedure with a larger screening length
k2

Fb
2 = 0.2. Figures 3(b) and 3(d) shows that the magnetization

grows smoothly with interaction strength, demonstrating a
second-order transition within the magnetization resolution of
our QMC calculations. We summarize our results for several
screening lengths in the phase diagram in Fig. 4(a). This
demonstrates how upon increasing the screening range the
critical interaction strength increases and the transition reverts
from first to second order. This trend is in good agreement with
the analytical predictions from Eq. (7), though the analytical
formalism predicts that the transition remains first order due
to the presence of a logarithmic divergence in the free energy
F ∼ |M|3 log(T ).1,3–5

In order to probe the question of the order of the transition
more closely, in Fig. 4(b) we show the magnetization formed
at the first-order transition as a function of the screening
length k2

Fb
2, predicted by both QMC and from the analytical

formalism. The analytical formalism predicts a magnetization
that falls rapidly with screening length because of the screening
reducing the fluctuation correction term that was responsible
for driving the first-order transition at a lower interaction
strength, but the transition remains first order due to the
logarithmic divergence in the free energy. The magnetization
following a first-order transition with the contact interaction
is predicted to be smaller by QMC, and drops to zero at
k2

Fb
2 = 0.2, at which point the transition becomes second order.

However, since the QMC method is able to sample the magne-
tization only at discrete values, M ∈ {0,0.07,0.19,0.28, . . .},
the minimum magnetization that can be formed in a first-order
transition is Mmin = 0.19. Due to the rapid decay in the
magnetization formed following the first-order transition with
screening length, we cannot resolve whether QMC predicts a
first- or second-order transition at k2

Fb
2 > 0.1, however, the

predicted crossing of the boundary Mmin = 0.19 predicted
at k2

Fb
2 ≈ 0.1 by QMC and k2

Fb
2 ≈ 0.18 from analytics is

consistent.
The DMC results have good qualitative agreement with

our analytical formalism at T = 0. This gives us confidence
to use the analytics to study the phase behavior at finite
temperature. Figures 1 and 4(c) show that the interaction
strength of the transition increases with temperature as the
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FIG. 4. (Color online) (a) Zero temperature phase behavior.
Phase boundary for the emergence of ferromagnetism with varying
interaction strength (g/gMF, primary x axis) and screening length
(k2

Fb
2, primary y axis) at zero temperature. The secondary x axis

and y axis show the parameters relevant for cold atom gases. The
solid line corresponds to a first-order transition, and the dashed
line a second-order transition. The red line shows the boundary for
the screened Coulomb interaction, and the blue line for the square
potential. The magenta solid line shows the analytical result for the
first-order transition with a screened Coulomb interaction. (b) Zero
temperature first-order transition. The magnetization at the first-order
transition as a function of Coulomb screening length calculated with
QMC (red) and analytically (blue). The green line shows the minimum
magnetization of a first-order transition that can be resolved within
QMC. (c) Finite temperature phase behavior. The shift in the phase
boundary interaction strength, g − gT =0 from the screened Coulomb
interaction zero temperature analytical phase boundary shown in
[(a), magenta solid line] at finite temperatures T ∈ {0,0.1,0.2,0.3}TF

calculated using the analytical formalism. The red solid lines denote a
first-order transition and the dotted red line a second-order transition,
and the green dots the tricritical points. The inset shows the tricritical
point temperature with screening length.
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fluctuation correction term is depressed.1 The trend remains
the same with increasing screening length. However, with
increasing temperature the transition reverts from first to
second order, and the inset of Fig. 4(c) reveals that the tricritical
point temperature reduces markedly with increased screening
length.

B. Cold atom gas

We now study the possible emergence of ferromagnetic
correlations in an ultracold atomic gas. The electrons are
simulated by a two-component gas of fermionic atoms, that
are mapped onto pseudo-up- and down-spin species. The
interactions between the atoms are controlled using a Feshbach
resonance. This gives experimentalists access to not only a
range of different interaction strengths but also the effective
range of the interparticle potential,17 that can be either positive
or negative depending on both the elements and the Feshbach
resonance used. In a cold atom gas the parameter used to
characterize the interaction strength is the two-dimensional
scattering length a2D that can be related to the interaction
strength used within the Coulomb interaction by ln(kFa2D) =
gMF/2πg, and the effective range is linked to the Coulomb
interaction screening length by re = −b2/a. However, this
gives us access to only negative effective ranges re � 0. To
study a positive effective range we turn to the square potential
Uθ (R − r) to model the interactions. Not only will this allow
us to study positive effective range, it will also serve as a useful
point of comparison to the results for the screened Coulomb
interaction. The square potential has a two-dimensional
scattering length a2D given by ln(kFa2D) = (gMF/8π2R)/
[1 − tanh(χ )/χ ] with χ = R

√
U , and effective range,

re = R

6

(
9 +

[
1 − tanh χ

χ

]−2

− 3

[
1

χ
+ 4

][
1 − tanh χ

χ

]−1)
. (8)

We now use DMC calculations to determine the ground
state in the presence of the square well potential. This allows us
to augment the phase diagram in Fig. 4. The critical interaction
strength and the emergence of the second-order transition are
similar for both the square well potential and our previous
study of the screened Coulomb interaction, though the square
potential can be extended to effectively negative k2

Fb
2. This

verifies the form of our phase diagram, and confirms that
irrespective of the interparticle potential our main result of
the transition changing from first to second order with rising
screening length within the resolution of our simulations,

accompanied by a rise in the critical interaction strength is
robust.

The persistence of the ferromagnetic transition from
negative into positive effective ranges kFre makes the two-
dimensional gas a tantalizing target in the search for ferro-
magnetism in a cold atom gas. Recent experiments have shown
that atomic gases with a large negative effective range17 have
greatly suppressed two- and three-body losses. Our predictions
of the changing magnetization in Figs. 3 and 4(b) could be
measured through phase contrast imaging that would reveal
the growing polarization in the emerging domains.21 Our
accurate determination of the phase boundary through DMC
calculations, complemented by analytical predictions, should
guide future experiments.

IV. DISCUSSION

In this paper we have outlined quantum Monte Carlo
calculations on the two-dimensional itinerant ferromagnet.
The calculations show that the system undergoes a paramagnet
to ferromagnet phase transition. The transition is first order
for interactions with a short effective range, and within
our magnetization resolution second order for interactions
characterized by longer effective ranges. We have reconciled
this with the damping effect that long-range interactions have
on the quantum fluctuations. We have compared the DMC
results to an analytical formalism and found good agreement,
allowing us to then use the analytic formalism to extend the
phase diagram to finite temperatures. Higher temperatures
suppress the first-order behavior leading to a tricritical point
at T = 0.3TF, whose temperature reduces with increasing
screening length.

With typical solid-state experimental systems having a
screening length 0.5 � kFb � 1,10,60 the first-order transition
should still be visible but with the fluctuation correction term
tempered, and thus the associated tricritical temperature will be
reduced. This could reduce the tricritical point seen in theory
0.3TF to the 0.02TF seen in experiments on both two- and
three-dimensional materials8–15 and increase the visibility of
exotic low temperature phases that are promoted by quantum
criticality such as the spin spiral and p-wave superconductor.
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