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Effect of three-body loss on itinerant ferromagnetism in an atomic Fermi gas
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A recent experiment has provided tentative evidence for itinerant ferromagnetism in an ultracold atomic gas.
However, the interpretation of the results is complicated by significant atom losses. We argue that during the loss
process the system gradually heats up but remains in local equilibrium.To quantify the consequences of atom loss
on the putative ferromagnetic transition we adopt an extended Hertz-Millis theory. The losses damp quantum
fluctuations, thus increasing the critical interaction strength needed to induce ferromagnetism and revert the
transition from being first order to second order. This effect may resolve a discrepancy between the experiment
and previous theoretical predictions. We further illuminate the impact of loss by studying the collective spin
excitations in the ferromagnet. Even in the fully polarized state, where loss is completely suppressed, spin waves
acquire a decay rate proportional to the three-body loss coefficient.
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I. INTRODUCTION

The Stoner transition from a paramagnetic metal to a
ferromagnet is one of the earliest known and seemingly
simple examples of a quantum phase transition. Yet recent
theoretical work [1–5] has revealed a great deal of complexity
and suggests that quantum fluctuations play a vital role in
determining the behavior near to the quantum critical point.
Specifically, fluctuations drive the ferromagnetic first-order
transition at low temperature and may lead to the formation of
novel phases [2,5]. Whether these effects can explain puzzling
experimental observations in materials such as ZrZn2 and
Sr3Ru2O7 [6] or if coupling to phonons or other auxiliary
degrees of freedom is involved remains an open question.
Ultracold Fermi gases tuned by a Feshbach resonance now
offer a concrete platform from which to answer such questions
[4] and enhance our understanding of quantum critical phe-
nomena in itinerant ferromagnets [7,8]. A recent experiment
[9] has provided evidence that could be consistent with a
ferromagnetic state [4,10–12], but cannot definitively prove
that some other strongly correlated phase [13] was not formed.
A major obstacle to the identification of a ferromagnetic phase
in an ultracold atomic gas is the loss of atoms due to three-body
interactions [9,10,14].

In this paper we demonstrate how the consequences of loss
extend far beyond a simple fall in atom number. We highlight
the quantum effects of the loss, showing that they induce
fundamental changes in the phase diagram. Motivation for
such an analysis comes in part from studies of one-dimensional
Bose gases, where it has been shown that the mere potential
for significant two-body loss can give rise, all by itself, to
Tonks-Girardeau correlations in the gas [15]. In the itinerant
fermion system, we discover that three-body losses damp
quantum fluctuations, which are vital in the establishment
of the equilibrium phase diagram [1,2,4,5]. Consequently
the phase transition reverts from first order to second or-
der. Moreover, the critical interaction strength required to
stabilize the ferromagnetic state increases significantly, from
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kF a ≈ 1.2 in the equilibrium theories [10,11] to kF a ≈ 2.4,
thus resolving a discrepancy with the experimental signature
at kF a ≈ 2.2. We further predict that spin waves of the
ferromagnetic phase acquire a finite lifetime in the presence of
loss and we propose an experimental protocol to observe this
effect.

Before proceeding let us outline the structure of the paper.
In Sec. II we derive an effective action for the Fermi gas in
the repulsive branch of the resonance, taking into account the
effect of loss. This is done by integrating both over molecules
formed virtually in two-body collisions and over molecules
and fast particles formed from three-body collisions. The latter
give rise to an imaginary three-body term in the action, which
we show generates imaginary single-particle and two-body
terms in the action upon renormalization to low energies.
In Sec. III we adapt the generalized random phase approx-
imation formalism, previously used to analyze the itinerant
ferromagnetic transition [8], to include the new terms due to
loss. The phase diagram, obtained from the Ginzburg-Landau
free energy thus derived, is presented in Sec. IV. In this
section we also discuss the impact of loss on the collective
spin excitations of the ferromagnet and propose experimental
protocols to measure their dispersion and lifetime. In Sec. VI
we justify the effective-equilibrium approach used in the
previous sections. By solving kinetic equations of the Fermi
gas, we show that the combination of loss and relaxation gives
rise to an effective equilibrium distribution with slowly varying
temperature and chemical potential. For a wide parameter
regime, the heating rate is sufficiently slow to be considered
adiabatic with respect to the quantum corrections discussed
in Sec. III. We conclude in Sec. VII with a summary and
outlook.

II. RENORMALIZATION OF INTERACTIONS

Our goal is to calculate the quantum partition func-
tion with a fermionic coherent state path integral Z =∫
D(ψ,ψ̄) exp(−S[ψ,ψ̄]). A common difficulty in addressing

the Stoner transition is that it occurs at an intermediate cou-
pling regime, with no small parameter to control a fluctuation
expansion. The standard approach is to tackle the problem from
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the weak coupling or dilute limit, with the expectation that at
least qualitative features of the analysis persist near to the
transition point [1–4,8]. This expectation is indeed supported
by quantum Monte Carlo studies of a lossless model [5,16,17].
Here we adopt the same strategy, assuming the dilute limit in
deriving the effective interactions including the effects of loss.
In particular, the dominant loss mechanism in the dilute limit
is the so-called three-body loss [9,10,14].

A common starting point for addressing the Stoner in-
stability in ultracold atomic gases is the effective action
for a two-component Fermi gas with repulsive contact
interactions:

S =
∫ β

0
dτdr

[∑
σ

ψ̄σ (∂τ + εk − µ) ψσ + gψ̄↑ψ̄↓ψ↓ψ↑

]
.

(1)

Here β = 1/kBT is the inverse temperature and we have also
set h̄ = m = 1. The two-component atoms are represented
by the Grassman fields ψ̄ and ψ and are characterized by
the single-particle dispersion εk = k2/2. The interaction is
represented here by a repulsive s-wave contact potential
gδ3(r). It is important to note, however, that the microscopic
interaction is, in fact, attractive, and in the regime of interest
it supports a two-body bound state (Feshbach molecule). This
degree of freedom is missing in the action (1). The bound
state has been integrated out to give the effective repulsive
interaction, as the two-body T matrix for scattering at positive
energies. In Eq. (1), the T matrix is approximated by its zero
energy limit which is energy independent or, in other words, an
effective contact interaction. This will have to be regularized
properly to avoid ultraviolet divergences. It is also important to
note that since the bound molecular state has been integrated
out to obtain Eq. (1), the effect of loss into the molecular state
is not included in this formalism.

Let us now derive the effective action taking the atom loss
into account. In the cold atom gas at low densities (kF a � 1,
where kF is the Fermi wave vector and a is the s-wave
scattering length), the loss occurs following a three-body
collision in which two atoms bind to a Feshbach molecule and
the third atom removes the excess energy. To introduce the
effect of loss into the effective action we have to integrate out
the bound state, while including the three-body processes in
addition to the two-body T matrix in Fig. 1(a). The appropriate
Feynman diagrams for the three-body T matrix are shown in
Figs. 1(b) and 1(c). The resulting contribution of three-body
interactions to the action is

iλ′
∫

drdRψ̄↑(R + r)ψ̄↓(R + r)[ψ̄↑(R)ψ↑(R)

+ ψ̄↓(R)ψ↓(R)]ψ↓(R + r)ψ↑(R + r)f (r), (2)

where λ′ is real and f (r) spans the range ∼a over which the
putative Feshbach molecule can interact with a third atom to
carom its excess energy. We adopt the normalization for the
Feshbach molecule potential of

∫
drf (r) = 1.

Note that we obtain an imaginary three-body interaction.
This is because both the bound state and the outgoing fast
particle, which are integrated over, are on-shell and describe a
physical decay process. That we obtained an imaginary term

(a)

(b)

(c)

FIG. 1. Three Feshbach molecule formation processes: (a) a
second-order process that can form only virtual unstable molecules,
which can be stabilized by a third atom in processes (b) and (c).
Single lines correspond to fermions, and double lines correspond to
Feshbach molecules.

in the action should not come as a surprise, as it merely betrays
the fact that the system is initialized in an unstable state and
is therefore out of equilibrium. We shall nevertheless continue
with the analysis of the effective action within the Matsubara
formalism assuming that the system can be considered as being
in quasiequilibrium. Later, in Sec. VI we provide arguments
which justify this hypothesis.

To further simplify the interaction we consider the dilute
(weak interaction) limit kF a � 1. In this regime the molecule
is small compared to the average particle separation and we can
therefore make a gradient expansion in the fields of Eq. (2). It is
also natural to turn to a momentum space representation. Next,
we note that single-particle terms and two-body interactions
are generated upon integrating out high-energy Fermions
perturbatively in λ:

iλ

2

[
ρ̄↑ρ̄↓

∑
σ,k

k2ψ̄σkψσk + ρ̄↑
V

∑
k,k′,q

k · k′ψ̄↑kψ̄↓k′+qψ↓k+q

×ψ↑k′ + ρ̄↓
V

∑
k,k′,q

k · k′ψ̄↑k+qψ̄↓k′ψ↓kψ↑k′+q

]
, (3)

where ρ̄σ is the average density of species σ , V is the system
volume, and λ = 3a2λ′/10. We retain only these terms in the
action, which are much more relevant at low energies than the
original three-body interaction [18].

III. FERROMAGNETISM

We are now in a position to study the consequences of
atom loss within the standard formalism established to treat
fluctuations in itinerant ferromagnets [8], taking into account
the effective interactions (3) generated by the three-body loss.

Before proceeding we generalize the formalism by intro-
ducing an atom source term of the form −iγ

∑
σ ψ̄σψσ into the

action. For the most part we shall set γ = 0, which describes
the physical system at hand. However there is conceptual

043618-2



EFFECT OF THREE-BODY LOSS ON ITINERANT . . . PHYSICAL REVIEW A 83, 043618 (2011)

appeal to consider a source with γ > 0 that can counterpoise
the atom loss and thus lead to a true steady-state, in which the
notion of a phase transition can be better defined. The source
term also provides a template of how to apply the formalism
to other physical systems such as polaritons in which laser
pumping cancels particle loss. Within this formalism, the
action is now

S =
∫ β

0
dτdk

[∑
σ

ψ̄σk(∂τ + εk + iλρ̄↑ρ̄↓k2 − µ − iγ )ψσk

+
∫

dk′dq[g + iλρ̄↑k · k′]ψ̄↑kψ̄↓k′+qψ↓k+qψ↑k′

+
∫

dk′dq[g + iλρ̄↓k · k′]ψ̄↑k+qψ̄↓k′ψ↓kψ↑k′+q

]
.

(4)

Finally we focus on the momentum dependence of the
two-body term. In Ref. [5] it was shown that the dominant
contribution due to fluctuation contributions stemmed from
electron-hole excitations at the Fermi surface near to |k +
k′| = 2kF , and therefore the principal contribution to the action
from fluctuation corrections stems from k · k′ = −k2

F . Using
this we recover the action

S =
∫ β

0
dτdk

[∑
σ

ψ̄σk(∂τ + εk + iλρ̄↑ρ̄↓k2 − µ − iγ )ψσk

+
∫

dk′dq[g − iλ(ρ̄↑µ↑ + ρ̄↓µ↓)]

× ψ̄↑k+qψ̄↓k′ψ↓kψ↑k′+q

]
, (5)

where the Fermi surface of the separate spin species is µσ =
k2
F,σ /2.

To proceed we calculate the free energy following the
prescription laid out in Ref. [8]. First we introduce a
Hubbard-Stratonovich transformation in both the density
channel ρ and the magnetization channel φ to decou-
ple the quartic terms in the fermionic field. This leads
us to identify the spectrum ξk,σ = εk + iλρ̄↑ρ̄↓k2/2 − iγ +
[g − iλ(ρ̄↑µ↑ + ρ̄↓µ↓)](ρ − σφ) − µ. After integrating out
the fermionic variables we expand the fluctuations in
the bosonic fields to quadratic order and also integrate
them out. To remove the unphysical ultraviolet divergence
of the contact interaction we employ the standard regu-
larization setting g �→ 2kF a

πν
− 2

V
( 2kF a

πν
)2 ∑′

k3,4
(ξk1,↑ + ξk2,↓ −

ξk3,↑ − ξk4,↓)−1 [19]. The prime indicates that the summation
is subject to the momentum conservation k1 + k2 = k3 + k4

and ν is the density of states at the Fermi surface of an
equivalent noninteracting gas. This regularization allows us
to characterize the strength of the interaction through the
dimensionless parameter kF a, where kF denotes the Fermi
wave vector and a is the s-wave scattering length. The analysis
yields a perturbation expansion in terms of the dimensionless
interaction strength kF a and the loss parameter λ. We now
set the fields to their as yet undetermined saddle point values
ρ = (ρ̄↑ + ρ̄↓)/2 and φ = (ρ̄↑ − ρ̄↓)/2 to yield the complex

free energy

F =
∑

σ

∫
dk(εk + iλρ̄↑ρ̄↓k2/2 − iγ )n(ξk,σ )

+
[

2kF a

πν
− iλ(ρ̄↑µ↑ + ρ̄↓µ↓)

]∑
k

n(ξk,↑)
∑

k

n(ξk,↓)

− 2

[
2kF a

πν
− iλ(ρ̄↑µ↑ + ρ̄↓µ↓)

]2

ϒ, (6)

where the quantum fluctuations are encoded in the term

ϒ =
∑

k1,2,3,4

′ n
(
ξk1,↑

)
n
(
ξk2,↓

)[
n
(
ξk3,↑

) + n
(
ξk3,↓

)]
ξk1,↑ + ξk2,↓ − ξk3,↑ − ξk4,↓

, (7)

and now ξk,σ = εk + iλρ̄↑ρ̄↓k2/2 − iγ + [2kF a/πν −
iλ(ρ̄↑µ↑ + ρ̄↓µ↓)]ρ̄σ − µ.

To analyze this complex free energy F , we separate it into
its real and imaginary parts. In Sec. IV we study the phase
diagram inferred from considering only the real part of the free
energy. The imaginary part betrays the fact that the system is
not in true equilibrium. Constant loss of particles leads to slow
heating and depletion of the system, whose effects cannot be
studied within our imaginary-time formalism. In Sec. VI we
use kinetic equations to show that the net effect of these terms
is to drive an effective equilibrium state with slowly rising
temperature.

To facilitate the splitting of the free energy, we now separate
the spectrum ξk,σ = ξ 0

k,σ + i�k,σ into its real part ξ 0
k,σ = εk +

2kF aρ̄σ /πν − µ and imaginary part �k,σ = λρ̄↑ρ̄↓k2/2 −
γ − λ(ρ̄↑µ↑ + ρ̄↓µ↓)ρ̄σ . We notice that the imaginary part
�k,σ is perturbatively small in λ and γ . Consistent with the
perturbation expansion in the interaction strength, we use
the low-temperature expression n(ξ 0

k,σ + i�k,σ ) ≈ n(ξ 0
k,σ ) −

i�k,σ δ(ξ 0
k,σ ) + �2

k,σ δ′(ξ 0
k,σ )/2 to expand the Fermi-Dirac dis-

tributions in Eqs. (6) and (7) out to quadratic order in �k,σ .
We see that contributions to the free energy that are quadratic
in �k,σ are real and so will contribute to the real part of the
free energy, whereas the linear order terms are imaginary.

The real part of the free energy is F = F0 + �(λ), where
the standard theory of a lossless system is encoded in the term

F0 =
∑
σ,k

εkn
(
ξ 0

k,σ

) + 2kF a

πν
ρ̄↑ρ̄↓ − 2

(
2kF a

πν

)2

ϒ0. (8)

An identical expression was derived in the homogeneous case
in Refs. [1,4,8] using second-order perturbation theory. The
renormalization of the interaction strength due to atom loss
enters through

� = 2λ2(ρ̄↑µ↑ + ρ̄↓µ↓)2

(
ϒ0 −

∑
σ

ρ̄2
−σµσ ν ′

σ

)

+ λ(ρ̄↑µ↑ + ρ̄↓µ↓)
∑

σ

(γ − λρ̄↑ρ̄↓µσ )ρ̄−σ

× (νσ − 2µσν ′
σ ) +

∑
σ

(γ − λρ̄↑ρ̄↓µσ )2

[
νσ

2
− µσν ′

σ

]
,

(9)
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where νσ denotes the density of states at the Fermi energy of
species σ , and ν ′

σ is the differential of the density of states at
the Fermi surface. Only those terms containing

ϒ0 =
∑

k1,2,3,4

′ n
(
ξ 0

k1,↑
)
n
(
ξ 0

k2,↓
)[

n
(
ξ 0

k3,↑
) + n

(
ξ 0

k3,↓
)]

ξ 0
k1,↑ + ξ 0

k2,↓ − ξ 0
k3,↑ − ξ 0

k4,↓
(10)

are embedded with quantum many-body effects realized
through fluctuation corrections. The remainder are mean-field
terms derived from expanding the kinetic energy and Stoner
interaction terms.

We now turn to obtain the imaginary part of the free energy.
This is

λ

(
ρ̄↑ρ̄↓

∑
σ

µ2
σ νσ −

∑
σ

ρ̄σµσ

∑
σ ′

ρ̄σ ′µ−σ ′ν−σ ′

)

−γ

(∑
σ

ρ̄σ + µσνσ

)
. (11)

The actual experiment is most naturally described by setting
γ = 0, and in this case we have an imaginary term in the free
energy that drives actual loss from the system. We complement
the γ = 0 approach with one that compensates for the three-
body loss with a linear gain term, γ > 0. Strictly speaking, the
phase boundary is defined only in this case which describes
a steady state. Having no net loss demands that there is no
imaginary component to the free energy, which fixes the atom
source term to

γeq = λ

∑
σ ρ̄σµσ

∑
σ ′ ρ̄σ ′µ−σ ′ν−σ ′ − ρ̄↑ρ̄↓

∑
σ µ2

σ νσ∑
σ ρ̄σ + µσνσ

. (12)

Here νσ denotes the density of states at the Fermi energy of
species σ . We note that the atom loss is zero when the system
is fully polarized and then in any case γ = 0.

IV. PHASE DIAGRAM

Having derived an expression for the free energy we now
turn to study its phase diagram. To determine the phase
diagram we use the real part of the free energy, focusing on
the boundary of the fully polarized state. Later, in Sec. VI we
return to address the loss dynamics implied by the imaginary
part of the free energy and determine in which situations it can
be safely neglected.

We first consider the mean-field approximation obtained
by neglecting the fluctuation corrections ϒ0 in the free
energy. As seen in Figs. 2(a) and 2(c), within the mean-field
approximation atom loss stabilizes the fully polarized phase,
which consequentially can be seen at weaker interaction
strengths, and the transition remains second order. When we
consider the collective modes in Sec. V, we will see that there
is a maximum loss rate λ = 25/33/5πν beyond which the fully
polarized state cannot be formed, bounding the fully polarized
region.

When fluctuations are taken into account in Figs. 2(b)
and 2(d), we see two important changes. First, without loss
(λ = 0) the fluctuations reduce the critical interaction strength
needed to enter the ferromagnetic phase (kF a ≈ 1.05) as
compared to the mean-field theory (kF a∗ = 25/33/5 ≈ 1.9)
and also drive the transition to be first order. This has been

pointed out before in Refs. [4,5,8]. Second, with loss, the
interaction strength required to enter the ferromagnetic phase
increases. Moreover, for sufficiently high loss the transition
reverts from being first order back to second order. These are
consequences of the dissipative effect of loss on the quantum
fluctuations, which can be exposed by returning to Eqs. (8)
and (9) and noting that the total contribution to the free
energy from the quantum fluctuations, that is, all terms pro-
portional to ϒ0, is 2ϒ0[λ2(ρ̄↑µ↑ + ρ̄↓µ↓)2 − (2kF a/πν)2].
We see that increasing loss acts in opposition to increasing
interaction strength so loss removes the first-order transition
and raises the interaction strength that the transition is
seen at.

Having understood the main features of the phase diagram
in the presence of loss we now focus on how it varies
when we consider two additional parameters: an atom source
and temperature. In the presence of an atom source that
compensates the loss (γ = γeq) the system displays the same
qualitative behavior, though the transition takes place at a
reduced interaction strength. All the effects are in essence
unchanged by the compensating source term, because they
stem from an inherently quantum mechanism underlying
the renormalization of the interaction strength, rather than
a purely classical fall in the atom number. The consistency
of the predicted boundaries for γ = 0 and γ = γeq also
verifies the robustness of our approach. Second, we show in
Sec. VI that loss blurs the Fermi surface and so raises the
effective temperature of the system. We focus on the special
temperature 0.14εF , which we show in Sec. VI corresponds to
the loss-driven temperature rise for the particular experimental
parameters. Finite temperature has only a small effect on the
phase diagram and chiefly reduces the range over which the
transition is first order rather than second order. This is because
we are approaching the tricritical point at T ≈ 0.2εF [4],
where the transition reverts to being second order even in
the absence of loss.

V. EXPERIMENTAL OBSERVATION

Having studied the phase diagram (Fig. 2), we now turn to
consider how it could be probed experimentally and to consider
the impact of loss on properties of the ferromagnetic phase.
In the strongly interacting regime we use experimental results
[20] to determine how the loss rate varies with interaction
strength and interpolate the trajectory that the atom gas follows
through the phase diagram. The system undergoes a second-
order transition into the fully polarized phase at kF a ≈ 2.4,
which compares favorably with the experimental observation
that the atomic gas became fully polarized at kF a ≈ 2.2 [9].
The observation of a significantly raised critical interaction
strength, compared to the equilibrium theory (kF a ≈ 1.0)
[10,11], is therefore strongly suggestive of the important role
that the damping of quantum fluctuations has to play.

Collective modes in the ferromagnet. We now consider
the impact of loss on the collective spin excitations of the
ferromagnet. We focus on the fully polarized regime, where
we have only transverse collective modes driven by the
inverse propagator 1 + 2kF a

πν

∑
ω,p G↑(ω + �,p + q)G↓(ω,p)

[8]. Equating this to zero yields collective mode frequencies
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FIG. 2. (Color online) The required interaction strength at (left) T = 0 and (right) T = 0.14εF to reach the shaded full polarization with
changing loss rate λ in (a,c) the mean-field case and (b,d) when fluctuation corrections are considered. The experimental [20] atom loss variation
is shown by the red points and accompanying trajectory. In (a,c) the regions where collective modes are underdamped and overdamped are
highlighted, and the ferromagnetic transition is always second order. The ferromagnetic state is not stable beyond λ = 25/33/5πν (see Sec. V).
In (b,d), the phase boundary is shown in the absence of atom source (γ = 0) and with an atom source that compensates for loss (γ = γeq). The
first-order fully polarized boundary is plotted with the dotted line, and the second-order boundary is shown by the solid line.

with both a real and an imaginary part. The real part, which
gives the collective mode dispersion is

� = q2

2

(
1 − kF a∗

kF a

1

1 + λ̃2/(kF a)2

)
, (13)

where λ̃ = λ(ρ̄↑µ↑ + ρ̄↓µ↓) and kF a∗ = 25/33/5 denotes the
interaction strength of the mean-field Stoner instability to
full polarization. Disregarding losses, the collective mode
dispersion is identical to that found by Callaway [21]. The
quadratic spin dispersion is equal to that of a single minority
spin species particle propagating through a sea of majority
spin particles. The dispersion rises with increasing interaction
strength kF a as the system becomes stiffer against spin
rotation. Atom loss introduces an additional energy penalty
for fluctuations, and consequentially the dispersion also rises
with the loss rate parameter λ̃. To fully expose the influence
that atom loss has over the dispersion it is useful to focus on
the instability to a partially polarized phase which develops at

kF a = kF a∗

2
+

√
(kF a∗)2

4
− λ̃2. (14)

Without three-body loss, the fully polarized phase becomes
unstable at kF a = kF a∗ in accordance with the prediction of
the mean-field Stoner model. At mean-field level fluctuations
destroy the ferromagnetic state, so Eq. (14) matches the bound-
ary, Figs. 2(a) and 2(c), which demonstrates how increased
loss reduces the required interaction strength. Working at the
mean-field level, there is a maximum loss rate, λ̃ = kF a∗/2,
beyond which the fully polarized state cannot be formed.

In addition to renormalizing the dispersion, the presence
of a loss interaction also leads to the decay of the spin
excitations. As the spin wave propagates the atom spins
develop a component in the opposite spin direction and so
incur atom loss, which in turn damps the spin wave. The
characteristic inverse time scale of damping, or width, of a
transverse mode can be found from the imaginary component
of its frequency,

� = q2

2

kF a∗λ̃
(kF a)2

1

1 + λ̃2/(kF a)2
. (15)

We see that due to atom loss the spin waves become resonances
that are characterized by a momentum-independent quality
factor:

Q ≡ �

�
= 1

kF a∗

(
(kF a)2

λ̃
+ λ̃

)
− kF a

λ̃
. (16)

In Figs. 2(a) and 2(c) we highlight the region Q < 1, where
spin excitations completely lose their integrity.

In experiment, these collective modes can be excited and
probed by spin-dependent Bragg spectroscopy. A variable
wavelength optical lattice potential couples asymmetrically
to the spin degrees of freedom and thereby excites transverse
magnetic fluctuations. The collective mode response could be
studied through dynamical fluctuations of the cloud spatial
distribution as a function of wavelength, laser amplitude, and
detuning.

An experimental handle that could modify the atom loss
rate would gift investigators with the ability to fully explore the
consequences of atom loss. This can be achieved, for example,
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by using an additional bosonic [22] or different fermion [23]
species that would act as a third body. The loss rate will be
proportional to the density of this third species, which can be
conveniently controlled.

VI. LOSS-DRIVEN HEATING AND QUASIEQUILIBRIUM
CRITERION

In the previous sections we studied the phase diagram by
considering the real part of the free energy Eq. (11), while
neglecting the imaginary part. This is based on an assumption
that at each instant the system can be described by an effective
equilibrium. In this section we study the validity of this
assumption.

Besides causing a net decrease in particle number, loss
events also tend to drive the system out of equilibrium by
producing “holes” in the Fermi distribution. At the same
time, two-particle collisions act to relax the distribution and
restore equilibrium. We use the Boltzmann kinetic equation
to study the interplay of these effects. We show that the
time-dependent distribution function is just the equilibrium
Fermi-Dirac distribution, but with a temperature that is slowly
increasing with time and a decreasing chemical potential.
In the next stage we check under what conditions the time
dependence thus induced is sufficiently slow so as not to
mask the interesting fluctuation effects found in the previous
sections.

The kinetic equation for the lossy Fermi liquid is given by

dnk,σ

dt
=

(
∂nk,σ

∂t

)
coll

+
(

∂nk,σ

∂t

)
loss

. (17)

The terms on the right-hand side acting on the distribution
function nk,σ correspond to the relaxation rate of atoms and
the three-body loss. In the steady state the collisional relaxation
rate is (

∂nk,σ

∂t

)
coll

= −nk,σ

τ te
k

+ 1 − nk,σ

τ h
k

, (18)

where the inverse lifetime of the quasiparticles is 1/τ e
k =

4(ε − εF )2(kF a)2(1 − N
eq
k,σ )/h̄εF and of the quasiholes is

1/τh
k = 4(ε − εF )2(kF a)2N

eq
k,σ /h̄εF , with the thermal equilib-

rium Fermi-Dirac distribution N
eq
k,σ . Combined these give the

net collisional relaxation rate(
∂nk,σ

∂t

)
coll

= 4(ε − εF )2(kF a)2

h̄εF

(
N

eq
k,σ − nk,σ

)
. (19)

Having set up the relaxation process that aims to restore the
equilibrium Fermi distribution we now turn to the three-body
loss process that causes particles to be removed. In the weak
coupling regime kF a � 1 loss occurs at a rate of [14](

∂nk,σ

∂t

)
loss

= −2�0(kF a)6n̄2nk,σ , (20)

where n̄ = ∑
k nk is the average density of one species of

the particles. With the rate of the two dynamical processes
established we are now in a position to write down the kinetic

equation for the whole system:

dnk,σ

dt
= 4(ε − εF )2(kF a)2

h̄εF

(
N

eq
k,σ − nk,σ

)−2�0(kF a)6n̄2nk,σ .

(21)

There are two time scales in the system: the loss rate of
atoms and the collisional relaxation rate. Fortunately they are
typically well-separated scales. At least at weak coupling, and
apparently also in the experiment, the collisional relaxation
rate is significantly quicker than the loss rate. Hence the
collisional term forces the distribution nk,σ to be equal to
the Fermi-Dirac distribution N

eq
k,σ , albeit with time-dependent

parameters µ and T . If the system is perturbed from the
Fermi-Dirac distribution such that nk,σ = N

eq
k,σ + ηk,σ , then

that perturbation decays exponentially with time with the usual
decay rate of a Fermi liquid quasiparticle, τ−1 ∝ (kF a)2(ε −
εF )2/εF .

The time dependence of the chemical potential and the
temperature can be found from the equation dnk,σ /dt =
−2�0(kF a)6n̄2nk,σ obtained when we substitute the Fermi-
Dirac ansatz for the distribution. If we sum over momenta we
recover the integrated form

∂n̄

∂µ

dµ

dt
+ ∂n̄

∂T

dT

dt
= −�0(kF a)6n̄3. (22)

At low temperature, the term dn̄/dT ∝ T can be neglected.
We can then solve the remaining equation to find that the
chemical potential falls as µ = µ0/

3
√

1 + 4�0(kF a)6n̄2t . Now,
to obtain the time-dependent temperature we return to the
kinetic equation, multiply by the kinetic energy, and again
sum over momenta to get

∂Ē

∂µ

dµ

dt
+ ∂Ē

∂T

dT

dt
= −�0(kF a)6n̄2Ē, (23)

where Ē = ∑
k,σ εk,σ nk. Substituting in our solution for the

chemical potential, we find that temperature rises as

T =
√

T 2
0 − 2µ2

0

15π2k2
B

{[1 + 4�0(kF a)6n̄2t]−2/3 − 1}. (24)

In the long time limit, for the relevant experimental parameters,
we find a predicted rise in the effective temperature of ∼0.14εF

and fall in chemical potential to µ = 0.92µ0. By comparing
Figs. 2(a) and 2(b) at T = 0 to Figs. 2(c) and 2(d) at T =
0.14εF we can see that the rise in effective temperature only
slightly renormalizes the phase boundaries. However, in the
vicinity of the tricritical point, where the transition reverts from
first order to second order, loss can turn the Stoner transition
second order just due to heating, even without the quantum
effects of the three-body loss. The fall in chemical potential
results in a negligible reduction in the interaction strength
to 0.97kF a and only a small impact on the observed phase
boundaries. The main effect of loss is the damping of quantum
fluctuations treated in the previous sections.

Having understood the consequences of the loss-driven
heating of the system we now turn to check if the sys-
tem can be considered to be quasistatic. Specifically we
would like to check if the time dependence is indeed
slow compared to the loss-induced corrections to the free
energy (9) that lead to the phase diagrams shown in Fig. 2.
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FIG. 3. (Color online) Satisfaction of the adiabaticity criterion.
The shaded area marks the region in the space of interaction strength
and the time in which the adiabacity criterion is satisfied if the system
starts the evolution at T = T0 = 0. The experimental parameters
where ferromagnetism is first expected is highlighted by the black
point.

Adiabaticity then requires that 1
T

dT
dt

< �. It is helpful
to turn to a dimensionless time scale, t̃ = 4�0(kF a)6n̄2t ,

and temperature T̃ = T

√
15π2k2

B/2µ2
0 and to define χ =

2(ρ̄↑µ↑ + ρ̄↓µ↓)2(ϒ0 − ∑
σ ρ̄2

−σµσ ν ′
σ )/(ρ̄↑ρ̄↓

∑
σ µ2

σ νσ −∑
σ ρ̄σµσ

∑
σ ′ ρ̄σ ′µ−σ ′ν−σ ′)2. The adiabaticity condition then

translates to

(1 + t̃)3/2

3
√

T̃ 2
0 + 1 − (1 + t̃)−2/3

< χ (kF a)6. (25)

We show the set of parameters that satisfy adiabacity in
Fig. 3. The criterion is not satisfied at weak interactions
kF a � 1 because even here the temperature rises at a finite
rate, while it is satisfied over an increasing time window at
interaction strengths kF a � 0.3. We note that at the phase
boundary the (kF a)6 loss law used in this analysis still holds,
and we have also verified that the adiabaticity criterion still
applies at kF a = 2.3 with the experimentally determined loss
rate [20]. Therefore, our formalism is expected to capture the
consequences of damping on the ferromagnetic transition.

VII. CONCLUSIONS AND OUTLOOK

In this paper we considered the problem of three-body loss,
inherent to a Fermi gas with effective repulsive interactions.

We argued, using kinetic equations, that in a large parameter
regime the lossy Fermi liquid can be treated as an effective-
equilibrium system. In this case the quantum effects of loss
can be derived within a simple imaginary-time formalism. We
have shown that these quantum effects can have a significant
impact on the nature of the ferromagnetic transition. Loss
damps quantum fluctuations and thereby leads to an increase
in the critical interaction strength to a value consistent with the
experimental findings. Furthermore, in the presence of loss
the transition reverts from being first order to second order.
We have highlighted signatures of this mechanism in the
collective mode spectrum.

More generally, we have shown that upon integrating
out the collision products, the loss interaction gives rise to
imaginary coupling terms in the effective action, in addition
to the repulsive contact interactions. These terms could have
an interesting impact on the nature of the Fermi liquid in
this regime. An intriguing question for future investigation
is how the presence of small loss affects the elementary
excitations of the Fermi liquid? Are new modes or instabilities
generated in the presence of the new terms? Finally, the
phenomenology that has been developed here opens the possi-
bility to explore how loss affects other systems. The formalism
could be directly applied to a wide range of problems across
condensed matter physics. A particularly topical example
where our formalism may well make a useful contribution
is polariton condensates [24]. These systems are inherently
out of equilibrium due to the finite lifetime of the polaritons,
which is typically treated as a two-body loss term. Our analysis
may also shed light on the consequences of the strong loss in
p-wave fermion superfluids and the pairing transition in a
superfluid Bose gas [25].
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