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A B S T R A C T

A neural network tool was used to discover a new nickel-base alloy for direct laser deposition most likely
to satisfy targets of processability, cost, density, phase stability, creep resistance, oxidation, fatigue life, and
resistance to thermal stresses. The neural network tool can learn property-property relationships, which
allows it to use a large database of thermal resistance measurements to guide the extrapolation of just ten
data entries of alloy processability. The tool was used to propose a new alloy, and experimental testing
confirms that the physical properties of the proposed alloy are better tailored to the target application than
other available commercial alloys.

© 2019 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Direct laser deposition promises to accelerate the manufactur-
ing process so that new components can go from drawing board
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to reality in a matter of hours. However, for this process to real-
ize its full potential a new generation of materials are required
that can accommodate the high temperature and stress gradients
generated during this unique manufacturing process. Contempo-
rary approaches to the development of new materials remains a
lengthy process of experiment-driven trial and improvement [1].
There is therefore a significant opportunity to develop an approach
to design bespoke alloys on the same timescales opened up by new
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manufacturing methods [2]. Such alloy design is particularly chal-
lenging as direct laser deposition has previously been applied to
only around ten alloy compositions, restricting the volume of train-
ing data available. To this end, we have adopted a neural network
driven approach [3–5] that can link data sets to allow the design of a
new direct laser deposition alloy, and experimentally verify that the
physical properties conform to the neural network predictions.

In designing an alloy that is suitable for this process, there
are many material properties that need to be optimized simulta-
neously. Previous approaches to understand the compromise that
must be made between different materials properties include rank-
ing compositions with a Pareto set [6–8], characterizing materials
with a principal component analysis [9], robust design [10], and
the orthogonal optimization of different properties [2,11–14]. Neural
networks [3–5,15–21], are a rapidly developing approach to cap-
turedeepcomposition-property correlations, however contemporary
approaches do not explicitly capture the property-property corre-
lations that will improve the quality of predictions. Furthermore,
there are correlations between experimental results and computa-
tional tools, for example the CALPHAD approach to thermodynamics
[22], PrecipiCalc [23,24], and Dictra [22]. These are useful tools to
predict both the phases present and moreover their evolution. As
such, when designing an alloy for direct laser deposition it is desir-
able to merge all of the data available, and in particular use the
large data sets for CALPHAD thermodynamics to guide the extrapo-
lation of the smaller data sets e.g. the processability for direct laser
deposition; this requires the ability to establish property-property
relationships. Therefore, we have developed a neural network tool
[3–5] that can learn both composition-property and also property-
property relationships to propose a newNi-base alloy for use in direct
laser deposition that is most likely to satisfy simultaneously the tar-
get properties of processability, cost, density, phase stability, creep
resistance, oxidation, fatigue life, and resistance to thermal stresses.

Ni-base alloy are widely used in applications that demand good
mechanical properties at high temperature alongside environmental
resistance. The combustor liner in a gas turbine engine is a clas-
sic example, being exposed to temperatures of up to 950 ◦C and
appreciable mechanical stresses. Nickel-base alloys presently used
in combustor liner applications include HastealloyX, Haynes 282,
Haynes 618, C263, and CM247LC. However, the combustor liner
is a component whose complex geometric design would benefit
from manufacture by direct laser deposition. The alloys C263 and
CM247LC have previously been trialed for direct laser deposition so
we adopt these as benchmarks. The effective design of an alloy for
direct laser deposition requires an understanding of the relationship
that exists between the alloy composition, the heat treatment sched-
ule, processability, cost, density, phase stability, creep resistance,
oxidation, and resistance to thermal stresses. This is a multidimen-
sional problem for which we have developed a neural network-
based formalism to analyze property-property relationships to guide
extrapolation.

The first section of this paper outlines the neural network tool
and specifies the chosen targets for the relevant material properties:
processability, cost, density, phase stability, creep resistance, oxida-
tion, and resistance to thermal stresses. In the second section, the
tool is used to propose the composition and heat treatment regime
(Table 2) for a new Alloy for Direct Laser Deposition, “AlloyDLD”.
The final section presents experimental results for the phase stabil-
ity, strength, ductility, oxidation, resistance to thermal stresses, and
fatigue of the newly designed alloy to verify the model predictions.

2. Methodology

The goal of the neural network tool is to predict the composition
and processing variables that are most likely to produce a material

that fulfills the multi-criteria target specification. The tool and
methodology is a development of the prescription in Refs. [3–5]. The
tool comprises predictive models for each property as a function of
the design variables, which for the Ni-base alloy presented contain
the elements {Al, B, C, Co, Cr,Mo,Nb,Ni,W, Zr} and the heat treatment
temperature. The neural network captures property-property corre-
lations so it can use a property with a large amount of data to guide
the extrapolation of another related property with sparse data. Criti-
cally, the tool can calculate the likelihood that a putative composition
and heat treatment fulfills the target specification, so we search
design space for the alloymost likely tomeet the target specification.

2.1. Target specification

The goal is to design a new Ni-base alloy that offers both
improved compatibility with direct laser deposition (more process-
able and giving a higher quality surface finish), and at the same time
having superior high temperature mechanical properties than the
current generation of Ni-base alloys that can be fabricated by direct
laser deposition. As such, the alloymust fulfill a wide ranging specifi-
cation, shown in Table 1, to ensure that it best meets the needs of the
target application. The elemental cost should be below 25$kg−1 and
the density should be below 8500kgm−3 to be competitive compared
to other Ni-base alloys. Both cost and density are predicted using
a model of the weighted commercial elemental prices and masses.
The alloyswith themost suitablemechanical properties are expected
to be those that possess a Ni c-phase containing up to only 25wt%
of hardening c′ and minimal (< 1.0wt%) amounts of other delete-
rious phases, giving two targets on the phase stability of the alloy.
The thermodynamic phase stability is evaluated by a neural net-
work trained on a database comprising of CALPHAD results, with data
sourced from the TTNI8 database [22]. The use of a neural network
to predict phase stability dramatically speeds up the alloy optimiza-
tion process as it is computationally less intensive than individual
thermodynamic calculations. We also require that the solvus tem-
perature is >1000◦C to be significantly above the envisaged highest
use temperature of 950◦C and to ensure that the strengthening c′
precipitates are retained in the microstructure during service. It is
also essential for direct laser deposition alloys to be readily process-
able and, therefore, the fractional area density of cracks and pores
must be minimized, set at < 0.15% by area. To accommodate this,
a thermal resistance parameter is defined as sy/Eaq where, sy is
the 0.2% proof stress, E the Young’s modulus, a the thermal expan-
sivity, and q the electrical resistivity, which correlates with thermal
resistivity. To limit crack formation during processing, the alloymust
have a good thermal resistance >0.04KY−1m−1. To ensure good oxi-
dation resistance we require a protective, well-adhered oxidation
film giving a mass gain of less than 0.3 mg cm−2 at 950 ◦C for 100

Table 1
The table shows the approach used to predict properties, the number of experimental
data entries used to train the neural network, and the references for the source of the
data. The final column shows the targets for each material property.

Property Approach Entries Target

Elemental cost Physical Model [25] < 25.0$kg−1

Density Physical Model [26] < 8500kgm−3

c′ content CALPHAD Model [22,27, 28] < 25wt%
Processability Neural net 10 [29–33] < 0.15% defects
Oxidation resistance Physical Model [34] < 0.3 mg cm−2

Phase stability CALPHAD Model [22,28] > 99.0wt%
c′solvus CALPHAD Model [22,28] > 1000◦C
Thermal resistance Neural net 6939 [35–87] > 0.04KY−1m−1

Yield stress at 900◦C Neural net 6939 [35–87] > 200MPa
Tensile strength at 900◦C Neural net 6693 [35–87] > 300MPa
Tensile elongation at 700◦C Neural net 2248 [35–87] > 8%
1000hr stress rupture at 800◦C Neural net 10860 [35–87] > 100MPa
Fatigue life at 500MPa, 700◦C Neural net 15105 [88,89] > 105cycles
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Table 2
The composition of proposed material AlloyDLD (composition is in weight%) and the
heat treatment. The design tolerance shows all design variables that are predicted to
fulfill the target specification.

Optimal composition (wt%) and heat treatment

Cr 19.0 ± 0.4 Co 4.0 ± 0.3
Nb 3.0 ± 0.1 W 1.2 ± 0.4
Mo 4.9 ± 0.2 Al 2.9 ± 0.2
C 0.04 ± 0.01 B 0.005 ± 0.002
Zr 0.045 ± 0.01 Ni Balance
THT/◦C 1230 ± 20

h. The alloy must also have good mechanical properties to be fit
for service and, therefore, targets are set for the yield stress, tensile
strength, tensile elongation, 1000hour stress rupture, and the fatigue
life that are enumerated in Table 1. The target for fatigue life was
set to be similar to other commercially available alloys as we focus
on improving other properties, particularly the processability. Many
properties including all mechanical properties cannot be predicted
reliably from first principles, so a database of experimental results
for all of the properties as a function of composition and processing
variables has been compiled from the sources referenced in Table 1.
In the experimental validation we compare principally against the
alloys C263 and CM247LC as these have previously been trialed for
direct laser deposition.

2.2. Neural network formalism

With the individual property models and their associated tar-
gets, as specified in Table 1, we now turn to the neural network
formalism. The design variables are the elemental concentration of
{Al, B, C, Co, Cr,Mo,Nb,Ni,W, Zr} and the heat treatment temperature
THT. However, for some properties there is little data available, in
particular there are just ten entries for alloy processability stemming
from alloys C263 [32], CM247LC [31], HastealloyX [29], Inconel718
[32], and Inconel738 [33]. We therefore develop a neural network
formalism that can identify the link between processability, phase
behavior, and other mechanical properties from common composi-
tions and then use the surplus mechanical property data at other
compositions to guide the extrapolation of the processability model.
Only through this strategy is it possible to obtain meaningful predic-
tions of without recourse to detailed knowledge of the mechanistic
origins of such behavior. We first outline the feedback loop that
allows the tool to complete missing endpoint data, before focusing in
on the internal neural network kernel.

2.2.1. Handling incomplete data
Experimental data is often incomplete — not all properties are

known for every alloy, and moreover the set of missing properties
is different for each entry. However, there is information embed-
ded within property-property relationships: in particular for direct
laser deposition alloys the scarce processability data can be linked
to the common thermal properties. A typical neural network formal-
ism requires that each property is either an input or an output of
the network, and all inputs must be provided to obtain a valid out-
put. We treat all properties as both inputs and outputs of the neural
network, but for a given composition we may know some properties
but not others. We therefore develop a new neural network formal-
ism based on an expectation-maximization algorithm [90], wherewe
first provide an estimate for themissing data, and then use the neural
network to iteratively improve that initial value.

Fig. 1. The neural network for the vector x of the design variables and properties that
has missing entries, computed recursively over n iterations.

The algorithm is shown in Fig. 1. For any unknown properties we
first set missing values to the average of the values present in the
data set. With estimates for all values of the neural network we can
then iteratively compute

xn+1 = cxn + (1 − c)f (xn) . (1)

The converged result is then returned instead of f(x). We include
a softening parameter 0 ≤ c ≤ 1, with c = 0 ignoring the ini-
tial guess for the unknowns in x and determining them purely by
applying f to those entries. However, c > 0 will prevent oscilla-
tions of the sequence so we adopt c = 0.5. Typically, 6 iteration
cycles were used to fill in missing values. The benefits of the proce-
dure to complete missing information will be seen when we perform
cross-validation testing.

2.2.2. Neural network kernel
There are multiple forms of neural network. A feedforward neural

network is the paradigmatic form that uses results from a previous
layer to inform the next, a deep neural network can build up deep
correlations. There are also more specialist capabilities for focused
problem, for example a convolutional neural network is ideal for
systems that display translational invariance and a recurrent neu-
ral network performs well on system that track time evolution.
Here, due to the nature of the data, we adopt a feedforward neural
network.

The neural network builds on the formalism used to design
nickel-base superalloys, molybdenum alloys, and find errors inmate-
rials databases [3–5]. We seek a function f that satisfies the fixed-
point equation f(x) ≡ x as closely as possible for all N elements x
from the data set. Each entry x = (x1, . . . , xI) is a vector of size I, and
holds information about I = 24 distinct design variables and prop-
erties. The trivial solution to the fixed-point equation is the identity
operator, but to impute data from other components we construct a
solution to the fixed-point equation that is orthogonal to the identity
operator.
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The neural network is a linear superposition of hyperbolic tan-
gents

f : (x1, . . . , xi, . . . , xI) �→ (y1, . . . , yj, . . . , yI)

with yj =
H∑

h=1

Chjghj + Dj,

and ghj = tanh

(
I∑

i=1

Aihjxi + Bhj

)
. (2)

This neural network has a single layer of hidden nodes ghj with
parameters {Aihj,Bhj,Chj,Dj} as shown in Fig. 2. Each property yj for
1 ≤ j ≤ I is predicted separately. We set Ajhj = 0 so the network
will predict yj without the knowledge of xj. Such a neural network
can fully capture non-linear behavior, through the inclusion of the
tanh function. This activation function typically outperforms others
(including the rectified linear unit, logistic, and binary step) in qual-
ity of predictions by ∼10% due the smoothness of the function and its
derivative. The number of hidden nodes was selected by a five-fold
cross-validation test [16,19,21]. Typically three hidden nodes gives
the best fitting neural network. The weights were trained using a
random walk to minimize the least-square error of its predictions
against the training data. 107 training cycles were used to reach
convergence. Twenty separate networks were trained on the data
with different weights [3–5] and their variance taken to indicate the

Fig. 2. The neural network. The graphs show how the outputs for y1 (a) and y2 (b)
are computed from all the inputs. The given properties (red) are used to calculate the
hidden nodes (blue) to give the predicted property (green). (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of
this article.)

uncertainty in the predictions accounting for experimental uncer-
tainty in the underlying data and the uncertainty in the extrapolation
of the training data [91,92]. The neural network code is implemented
in FORTRAN.

2.2.3. Cross-validation
To verify the accuracy of the neural network models cross-

validation was performed. The network was trained on a randomly
selected 80% of the data, and then validated against the remaining
20% of the data. The procedure was repeated five times on differ-
ently randomly selected data to give complete coverage of the entire
data set. Cross-validation was performed on all properties, but in
Fig. 3 (a), we highlight our results for the yield stress. The test was
performed twice: first the neural network was trained on the data
containing just the composition, heat treatment, and yield stress, and
then the predictions for yield stress were compared with the val-
idation data. Here, we find that the typical standard error in yield
stress is 122 MPa. Next a neural network was trained on the data
containing the composition, heat treatment, and all physical proper-
ties. This allowed it to learn property-property correlations (such as
yield stress with tensile strength, stress rupture, and phase behavior)
during training. This also enabled the neural network to learn about
the complex composition-yield stress correlations by extrapolating
based on related properties at other compositions.

During validation we provided the network with just the compo-
sition and heat treatment as inputs and the yield stress predictions
are shown in Fig. 3 (a).We find that the typical standard error in yield

Fig. 3. (a) Cross-validation test for experimental yield stress (x-axis) with predicted
yield stress (y-axis). The green line shows the expected result for a perfect prediction.
The pink points show the yield stress predictions when trained with just composition
and heat treatment information, the purple points show the predictions when trained
with both composition and also other physical properties. b) Cross-validation test for
yield stress with number of hidden nodes in the neural network.
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stress is just 37 MPa, an improvement by over a factor of three. We
follow Refs. [16,19,21] and adopt the coefficient of determination as
a dimensionless measure for quality of fit, allowing us to compare
and compute the fit for different quantities with different units. We
achieve a coefficient of determination R2 = 0.96. An additional test
can be performed on the ability to extrapolate in chemical space. We
split the data set into a training set of alloys with >1wt% of Alu-
minum and validated on those alloys with < 1wt% of Aluminum. We
achieved a coefficient of determination R2 = 0.89, confirming the
ability to extrapolate into new chemical space.

A similar level of accuracy is achieved during cross-validation
testing for other physical properties with an average coefficient
of determination R2 = 0.95. The lowest three properties with
the lowest coefficient of determination were processability with
R2 = 0.83, tensile elongation with R2 = 0.86, and tensile strength
with R2 = 0.92, which are also the properties with the fewest
data points. On the other hand cost, and density were both per-
fectly modeled with R2 > 0.995. Finally, we also tested placing
the commercially available C263 and 100 nearest materials in com-
position space into a validation data set. The properties of these
materials could be predicted with R2 = 0.94, confirming the abil-
ity to extrapolate in composition space and ultimately design new
materials.

Cross-validation was also used to verify the number of hidden
nodes adopted. In Fig. 3 (b), we study the how the coefficient of
determination for fitting the yield stress data changes with number
of hidden nodes. With too few hidden nodes the fit is poor as the
model cannot properly fit the data, and with too many hidden nodes
the model over fits and accuracy falls. The optimal number if hidden
nodes to fit the yield stress data is three.

Finally, the ability of the neural network to understand the uncer-
tainty in its predictions was tested. Specifically, comparison was
made between the standard error predicted by the neural network
and the actual difference fromunseen validation data, which on aver-
age should be unity. We find that the root mean square average ratio
is 1.05 with standard deviation 0.12, confirming the ability of the
neural network to understand the accuracy of its predictions.

2.3. Optimizing the material properties

In this approach, the individual material properties are converted
into a single merit index L = V[S−1(	V − 	T)] that describes the
likelihood that the material properties (	V) satisfy the design crite-
ria (	T). Here,V is the multivariate cumulative normal distribution
function and S is the covariance matrix [93]. Combining the indi-
vidual property likelihoods enables an estimate to be made of the
likelihood that the alloywill fulfill thewhole specification. Therefore,
the use of likelihood also allows the tool to explore and select the
ideal compromise betweenmaterial properties, which is inaccessible
with methods that do not account for likelihood, such as a principal
component analysis [9] and robust design [10], and the neural net-
work allows us to capture deeper correlations than linear regression
methods such as in principal component analysis [9].

As well as predicting material properties, the tool must vary
the composition and processing variables to optimize the properties
against the set targets. Previous optimization techniques included
running over a predetermined grid of compositions, and then sieving
them with trade-off diagrams [13], or a Pareto set [6–8]. However
the expense of these methods scales exponentially with the number
of design variables. Another approach is to use genetic algorithms
[94,95], but this approach is not mathematically guaranteed to find
the optimal solution [96,97] and it displays poor performance in high
dimensional problems [96,97]. Here, we maximize the logarithm of
the likelihood log(L) to ensure that in the region where the mate-
rial is predicted to not satisfy the specification the optimizer runs

up a constant gradient slope that persistently favors the least opti-
mized property. The tool searched high-dimensional composition
space with bounds on elemental composition of 5% ≤ Cr ≤ 30%,
0 ≤ {Nb,Mo,Co,W,Al} ≤ 8%, 0 ≤ {C,Zr,B} ≤ 1%, and processing vari-
able 900◦C ≤ THT ≤ 1300◦C, taken from the limits of the training
data. We explore the design space with a random walk that uses a
step length comparable to the accuracy with which a material could
be manufactured. This is 0.1wt% for the entire composition exclud-
ing the possibility of microsegregation. The tool typically search over
∼108 sets of design variables in ∼1h to explore the space and search
for an optimal material.

2.4. Alloy proposed

With the neural network tool established, a new Ni-base alloy
was designed to fulfill the targets in Table 1, and the properties of the
alloy subsequently verified by experiment. The neural network pro-
posed the composition and processing variables for AlloyDLD, shown
in Table 2. This alloy is predicted to have a 30% likelihood of meeting
the target specification. The composition is quoted with a range of
concentrations that were predicted to satisfy all of the target criteria.
AlloyDLD notably has high levels of Cr, at 19wt %, and no Ti to ensure
good oxidation resistance. However, inevitably, the neural network
code must make a compromise between the different properties of
an alloy. This can be directly visualized from the predicted properties
and an example is shown in Fig. 4, which illustrates the probability
of fulfilling the design criteria as the targets for thermal resistance
and phase stability are changed. The probability is zero in the top-
left hand corner of the graph at low phase stability and high thermal
resistance denotes the physical impossibility of an alloy existingwith
these properties as the targets for thermal resistance and phase sta-
bility are too ambitious. The proposed alloy is the one most likely
to fulfill the targets and is highlighted as it lies at the center of the
largest region of highest likelihood. The rapidly varying likelihood
of satisfying all of the targets reflects how other properties change
markedly. This variation is similar to that seen in the design of other
Ni-base superalloys [3] and Mo-base alloys [4]. The understanding
of this landscape of likelihood also allows an engineer to select the
ideal compromise for their application, for example with the aid of
an Ashby plot [98].

Fig. 4. The probability of an alloy fulfilling the design criteria as the targets for the
thermal resistance (y-axis) and phase stability (x-axis) are varied. The white shaded
areas show regions that fail to meet thermal resistance and phase stability targets.
The color of shading shows the likelihood of exceeding all of the targets, following the
scale on the right. The white circles show the proposed AlloyDLD and existing alloy
C263. (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)
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3. Manufacture

The proposed AlloyDLD is predicted to fulfill the target specifica-
tion. However, experiments are required to verify its performance. A
30kg ingot of AlloyDLD was prepared by vacuum induction melting.
This was then subjected to gas atomization and then sieved to pro-
duce a powderwith a particle distribution that varied between10 and
100lm, with a mean value of 30lm. Test pieces were manufactured
using direct laser deposition with a range of energy densities, scan
speed, and scan spacing combined into an “exposure parameter”.

To measure the area fraction of defects shown in Fig. 7, exten-
sive micro-structural analysis was carried out on selected samples
using scanning electron microscopy (SEM). Samples were analyzed
in their horizontal and vertical planes, parallel and perpendicular to
the build plane respectively. Using the exposure parameter with the
lowest area fraction of defects, sample blanks were built for property
testing. The samples were solution heat treated at 1230 ◦C (for 2h)
followed by a precipitate heat treatment (20h at 800 ◦C).

4. Results

The experimental properties of AlloyDLD were assessed in two
stages: first the physical properties of AlloyDLD were studied and
compared to other alloys including CM247LC, and C263. Secondly,
the effect of varying the heat treatment temperature, THT, on the
properties of AlloyDLD were studied to confirm that the optimal
processing variables had been selected.

4.1. Physical properties

Fig. 6 (a) shows a secondary electron micrograph of AlloyDLD.
The presence of a c matrix containing ∼15% c′ precipitates is con-
sistent with the neural network prediction of ∼17% c′ phase. Three
heat treatment tests at (700 ◦C, 800 ◦C, 900 ◦C) for 1000h showed
only slight c′ phase evolution and no deleterious phases, confirming
the phase stability. Fig. 6 (b) also shows a sample combustor liner
formed by direct laser deposition out of AlloyDLD. The surface finish
achieved is consistent with other alloys suitable for direct laser depo-
sition; this is further evidence that AlloyDLD is suitable for direct
laser deposition.

Oxidation properties were measured by preparing samples of the
test alloys measuring 30 × 10 × 0.5 mm, with a 4000 grit surface
finish. For each sample, a hole was spark eroded and the sample was
hung on a fine mass balance that can weigh to an accuracy of 0.015
mg. The sample was exposed to an area of the furnace where the
temperature was measured to be 950 ± 2◦ C and the mass change
of the sample was then recorded every 60 s, or every 0.12 mg mass
change for a duration of 100h. In Fig. 5 (a), it can be observed that
the mass gain matches well with the neural network prediction,
improves on CM247LC and is significantly better than C263. This con-
firms that AlloyDLD fulfills the target specification of having good
oxidation resistance.

The thermal resistance was calculated as a function of tempera-
ture for both horizontally and vertically built samples, and the results
obtained are compared with the neural network prediction in Fig. 5
(b). Thiswas achievedbymeasuring properties defined in the thermal
resistance parameter separately. The properties are similar for the
horizontally and vertically printed samples, confirming good mate-
rial homogeneity. The neural network predictions for the thermal
resistance of C263 match well with the experimentally measured
values, and moreover the neural network predictions for AlloyDLD
agree well with experiment. We note that for AlloyDLD the exper-
imental prediction at 900 ◦C has slightly lower thermal resistance
than predicted by the neural network. However, it is only slightly
more than one standard deviation out (where 30% of measurements

Fig. 5. (a) The thick lines show the mass gain at 950◦C with time of the AlloyDLD,
CM247LC, and C263. The shaded purple area denotes the range of neural network pre-
dictions for the mass gain of AlloyDLD. (b) The points show the thermal resistance of
samples of AlloyDLD and C263 printed horizontally (solid circle and diamond points
respectively) and vertically (open circle and diamond points respectively). The neu-
ral network predictions are shown by the solid lines with uncertainty denoted by the
shaded region. (c) The 105 cycle fatigue stress with temperature for AlloyDLD printed
horizontally (solid circle points) and vertically (open circle points). (d) The low cycle
fatigue cycles with temperature for AlloyDLD printed horizontally. In all graphs the
gray shaded region denotes the target range. (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)

are expected to be), and this is at the upper bound of tempera-
tures that the model can be applied at, where its predictions can be
expected to be less accurate. The experimental results confirm that
AlloyDLD has a higher thermal resistance than C263. For CM247LC,
the mechanical properties and thermal resistance cannot be mean-
ingfully compared because it is difficult to process using direct laser
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Fig. 6. (a) Secondary electron micrograph image for AlloyDLD. (b) Representative geometry of a sample combustor manufactured by direct laser deposition.

deposition resulting in cracking throughout the alloy. This has been
suggested due to residual stresses throughout the build process [99].

In Fig. 5 (c), we show the high (105) cycle fatigue for a machined
sample of AlloyDLD between 0 and 500 MPa. The similarity of the
results for horizontally and vertically printed samples show good
homogeneity of the samples. In Fig. 5 (d), it can also be observed
that for notched samples measured in load controlled fatigue at
600MPa between room temperature and 800 ◦C the number of cycles
to failure measured in experiment matches well with the theoretical
prediction. To probe the creep resistancewemeasured the 1000hour
stress rupture at 800 ◦C for a sample printed in the horizontal direc-
tion, recording 105MPa, surpassing the target of 100MPa.

4.2. Defects

Sections of the assembled geometry were assessed using a scan-
ning electron microscope to evaluate the area fraction of defects
within the material. Fig. 7 (a) shows how the defect content of the
material varied with the exposure parameter. A higher exposure
parameter led to a lower area fraction of defects. From this it can
be inferred that a lower scan spacing, scan speed, and energy den-
sity lead to a lower proportion of defects in the material. For an alloy
that is subjected to three-dimensional loading it is important that the
area fraction of defects shown in is kept to a minimum in both the
horizontal and vertical directions so that the mechanical properties
are not compromised. The area fraction of defects for horizontally
and vertically printed samples is shown to have a similar correla-
tion with the exposure parameter, showing that the area fraction of
defects can be minimized to a low level.

4.3. Heat treatment

The samples were solution heat treated for 2h followed by a pre-
cipitate heat treatment at 800◦C for 20 h. To better understand the
choice of solution heat treatment temperature, THT, the variation of
ductility with THT is shown in Fig. 7 (b). The ductility was measured
with the sample held at two different test temperatures: 780 ◦C and
also 900 ◦C, it rises rapidly with THT to a plateau at an optimal value
in the region of THT = 1230 ± 20◦ C, as specified. It is not possi-
ble to increase THT above the solidus temperature of 1262 ◦C, so the
heat treatment has been specified to be as near to the solidus as
practically possible. Fig. 7 (c) also shows the variation of yield stress
with solution temperature. This was measured on a machined test
sample at a strain rate of 0.001s−1 with a 15minute dwell at the test-
ing temperature. Here, the variation is smooth, but again shows that
the selected solution temperature gives the optimal values for yield
stress. AlloyDLD has a higher yield stress than C263 [72] at both test
temperatures, confirming its real-life utility. The study confirms that
the neural network has selected the optimal processing conditions
for AlloyDLD.

Fig. 7. (a) Area percentage of defects in the AlloyDLD with exposure parameter. The
solid circles are for samples printed horizontally and the open circles are for samples
printed vertically. The gray shaded region denotes the target range. (b) Elongation
with heat treatment temperature measured at 780◦C (open magenta circles) and
900◦C (closed pink circles). (c) Yield stress with heat treatment temperature mea-
sured at 780◦C (openmagenta circles) and 900◦C (closed pink circles). The gray shaded
region denotes the range of recommended design heat treatment temperatures, and
the red vertical line denotes the solidus temperature. We also show two results for
C263 (open diamonds at 780◦C and closed diamonds at 900◦C). (For interpretation of
the references to color in this figure legend, the reader is referred to the web version
of this article.)
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5. Conclusions

A neural networkwas used to propose the Ni-base AlloyDLDmost
likely to simultaneously fulfill thirteen physical criteria (processabil-
ity, cost, density, phase stability, creep resistance, oxidation, fatigue
life, and resistance to thermal stresses) given the experimental and
computational data available. The neural network was guided in its
extrapolation of ten data points for processability by using physical
data for other properties. AlloyDLD has been experimentally verified
to have phase behavior, processability, oxidation resistance, ther-
mal resistance, yield stress, fatigue life, and ductility properties that
match the neural network predictions and are better tailored to the
target application than other available commercial alloys. With high
levels of processability, oxidation resistance, thermal resistance, and
good high-temperature mechanical properties, AlloyDLD possesses
the properties to be used as a combustor liner manufactured by
direct laser deposition.
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