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G. J. Conduit and Y. Meir
Department of Physics, Ben Gurion University, Beer Sheva 84105, Israel

(Received 8 February 2011; revised manuscript received 1 June 2011; published 22 August 2011)

We present a novel formulation to calculate transport through disordered superconductors connected between
two metallic leads. An exact analytical expression for the current is derived and applied to a superconducting
sample described by the negative-U Hubbard model. A Monte Carlo algorithm that includes thermal phase and
amplitude fluctuations of the superconducting order parameter is employed, and a new efficient algorithm is
described. This improved routine allows access to relatively large systems, which we demonstrate by applying
it to several cases, including superconductor-normal interfaces and Josephson junctions. Moreover, we can link
the phenomenological parameters describing these effects to the underlying microscopic variables. The effects
of decoherence and dephasing are shown to be included in the formulation, which allows the unambiguous
characterization of the Kosterlitz-Thouless transition in two-dimensional systems and the calculation of the
finite resistance due to vortex excitations in quasi-one-dimensional systems. Effects of magnetic fields can be
easily included in the formalism, and are demonstrated for the Little-Parks effect in superconducting cylinders.
Furthermore, the formalism enables us to map the local super and normal currents, and the accompanying electrical
potentials, which we use to pinpoint and visualize the emergence of resistance across the superconductor-insulator
transition.

DOI: 10.1103/PhysRevB.84.064513 PACS number(s): 72.20.Dp, 73.23.−b, 71.10.Fd

I. INTRODUCTION

Chief among the remarkable effects observed in super-
conductors is their eponymous perfect conductivity. Within
BCS theory,1 where superconductivity arises due to pairing
between electrons, the effects of temperature T , magnetic field
B, and disorder are well understood: as the pairing amplitude is
suppressed by these physical parameters, the system becomes
normal, and attains a finite resistance. For low-dimensional
systems, on the other hand, it has been long understood
that phase fluctuations of the pairing amplitude play a major
role in the loss of perfect conductance.2 In two-dimensional
systems, for example, it has been demonstrated3 that as the
temperature increases there is a critical temperature TKT where
vortices and antivortices unbind and proliferate through the
system, leading to the loss of global phase coherence and
superconductivity, even though the pairing amplitudes remain
finite. Indications of such a Berezinsky-Kosterlitz-Thouless
(BKT) transition have been observed in Josephson-junction
arrays,4 in superconducting (SC) thin films,5 and possibly in
high-Tc cuprates.6

In recent years there has been a reinvigoration of research
into low-dimensional superconductors. This has been moti-
vated by intriguing experimental observations of electronic
transport through disordered SC thin films, such as a huge
magnetoresistance peak7 and a “super-insulator” phase,8 and
by the technological progress in producing two-dimensional
superconductors in the interface between two oxides9 and in
making ultra-thin cuprate superconductors.10 Many of these
observations have not yet been satisfactorily explained, chiefly
because there is no theory that can calculate the current, even
numerically, through a disordered superconductor, based on a
microscopic model.

The calculation of the resistance within the BCS pic-
ture, usually based on the Bogoliubov-de Gennes (BdG)
mean-field approach, is straightforward. Blonder, Tinkham,
and Klapwijk (BTK)11 studied the reflectance and transmis-

sion at a metal-superconductor junction, and an analogous
study was performed at superconductor-metal-superconductor
junctions.12 Similar approaches13 utilized the Buttiker-
Landauer picture14,15 for noninteracting Cooper pairs to study
scattering through a SC region. (A difficulty with the direct
application of the BdG formalism is the nonconservation of
charge, which can be overcome by studying a normal ring
containing a SC segment.16) An alternative approach near to
the BCS critical temperature is to use a scaling assumption
for the conductivity.17 The current through diffusive normal
metal-superconductor structures has also been calculated using
a Keldysh scattering matrix theory.18 All these approaches
neglect phase fluctuations so they cannot be used to study
two-dimensional superconductors that exhibit a BKT-like
transition at low temperatures.

The resistance of low-dimensional superconductors can
also be calculated using phenomenological models. The
conductivity of uniform systems can be probed analyti-
cally by studying phase slips across the sample within the
Ginzburg-Landau approach.19,20 Thermally excited phase slips
explain both nonlinear conductivity and vortex creep induced
resistance,21 while quantum activated phase slips can drive SC
wires insulating.22 However, phenomenological calculations
are neither underpinned by a microscopic model nor include
Coulomb repulsion or disorder except for the introduction of
a phenomenological normal state resistance.

Here we develop a new formalism to calculate the current
and its spatial distribution in a superconductor taking into
account phase fluctuations in the presence of disorder, finite
T and B, and Coulomb repulsion. The approach we detail
here is based on the Landauer-Buttiker scheme,14,15 where
one attaches metallic leads to the sample and then calculates
its conductance. The lead-superconductor tunneling barriers
ensure that the conductance of the system is always finite,
even in the SC phase. A previous attempt using the quantum
Monte Carlo approach to calculate current in disordered
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FIG. 1. (Color online) Schematic of the experimental setup within
the negative-U Hubbard model. The left- and right-hand metallic
leads are shown in blue, from which electrons can tunnel through the
barriers shown by the gray links into the central, possibly disordered
SC region which is shown in red.

systems employed the fluctuation-dissipation theorem via the
current-current correlation function.23

The Landauer formula14,15 is a widely adopted method
to calculate the current through a mesoscopic sample that
contains noninteracting particles. Meir and Wingreen24 have
generalized the formula to produce an exact expression
for the current through any interacting region attached to
noninteracting leads, which has been successfully applied to a
wide range of systems. Following this approach, we partition
the system into the three parts shown in Fig. 1: the left-hand
lead, the central interacting region, here a superconductor, and
the right-hand lead. In the leads the natural particle basis set
is comprised of electrons, and in the sample the natural basis
set is Bogoliubons. To circumvent this mismatch of particle
basis sets we reformulate the Meir-Wingreen formula in a
Bogoliubon basis set to derive an exact analytical expression
for the current flow through a possibly SC region, attached to
two metallic leads.

Having derived a general, exact formula, we then model the
SC region by a generalized negative-U Hubbard model based
on the lattice shown in Fig. 1. Introducing two local auxiliary
fields (which reduce to the local density and gap at zero
temperature), we decouple the interacting fermions. While the
conductance formula is exact, in order to evaluate correlation
functions, while integrating exactly over the fermions, we
neglect quantum fluctuations of the auxiliary parameters,
and integrate numerically over their thermal fluctuations25,26

using a Monte Carlo method. A significant advantage of
the formalism is that it allows us to construct current and
potential maps of the system. These enable us to diagnose
the microscopic features that increase the resistance of the
sample. This paper details the new procedure and presents a
number of applications of the formalism for simple systems,
where one can compare with existing theories and shed light
on several phenomena. These calculations represent the first
ab initio studies of these effects, and so allow us to provide
a link between the phenomenological parameters often used
to describe them and the underlying microscopic variables.

Moreover, we go further and study regimes not accessible by
the phenomenological models.

The paper is organized as follows. In Sec. II we first
derive an exact analytical expression for the current through
a SC region. Using this expression, in Sec. III we describe
the approximation and numerical procedure, and outline
improvements to the auxiliary field approach that allows us
to study large systems. Having developed the new formula
for the current and accompanying computational tool, it is
imperative to carefully test it against a series of known
results. Therefore, in Sec. IV A we study superconductor-
normal interfaces in clean systems, and compare with the
BTK transmission formulas, while in Sec. IV B we study
the temperature-dependent current in a Josephson junction.
In Sec. IV C we describe how effects of decoherence and
dephasing are manifested in the formalism. We investigate the
temperature dependence of resistance in Sec. IV D in which
we uncover the temperature dependence of the resistance
that characterizes the BKT transition in two dimensions and
vortex excitations in quasi-one-dimensional systems. We then,
in Sec. IV E, apply an external magnetic field to probe the
Little-Parks effect. Finally, we demonstrate how to construct
current and potential maps for the system, and use them to
study the microscopic behavior at the superconductor-insulator
transition in Sec. IV F. The details of the analytical derivation
and the numerical procedure are described in the Appendixes.

II. ANALYTICAL DERIVATION

A. Current formula

To calculate the current for interacting particles, we start
with the general formula for the current24 through an interact-
ing region, connected between two noninteracting leads

J = ie

2h

∑
σ

∫
dε

[
Tr

{
(fL(ε)�L − fR(ε)�R)

(
Gr

σ − Ga
σ

)}
+Tr{(�L − �R)G<

σ }]. (1)

Here fχ (ε) ≡ {exp[β(ε − μχ )] + 1}−1 with χ ∈ {L,R} the
Fermi distribution of the left (L) and right-hand (R) leads that
are held at chemical potentials μχ and reduced temperature
β ≡ 1/kBT (where kB is the Boltzmann constant). The
imposed potential difference eV ≡ �μ = μL − μR between
the leads drives the current J through the system. The integral
is over all electronic energies ε. �

χ

ij ≡ 2π
∑

a∈χ ρa(ε)YaiY
∗
aj

for channels a in lead χ , and Ya,i is the tunneling matrix
element from channel a in the the lead to site i in the
sample. Finally, Gr

ijσ , Ga
ijσ , and G<

ijσ are the electronic retarded,
advanced, and lesser Green’s functions (in the site basis) for
electrons of spin σ in the sample calculated in the presence of
the leads.

Equation (1) is exact and it captures, via the electronic
Green’s function G, all the processes that can transfer an
electron through the system. When the intermediate regime
has SC correlations, some of these processes involve Andreev
scattering—absorption of an electron pair by the condensate
and a propagation of the remaining hole. To expose these
processes, allowing us below to separate the SC and normal
channels, it is convenient to transform from the electron
basis set (c†iσ ,ciσ ) with site index i into the Bogoliubov basis

064513-2



FIRST-PRINCIPLES CALCULATION OF ELECTRONIC . . . PHYSICAL REVIEW B 84, 064513 (2011)

set (γ †
nσ ,γnσ ), using the Bogoliubov-de Gennes relations

ciσ = ∑
n ui(n)γnσ − σv∗

i (n)γ †
n−σ (at present ui and vi are

arbitrary, except for the unitarity condition, but later on they
will be determined by the actual Hamiltonian that will be used
for the SC region). The Bogoliubov basis will also allow us
to identify the low-energy excitations in the system, enabling
us to speed up the numerical calculation by concentrating on
these states, see Appendix B. Green’s functions transform
from the electron basis Gσ into the energy basis set of Green’s
functions {G>

σ ,G<
σ } and the family of anomalous Green’s

functions H>
σ (m,n) = −i〈γ †

m−σ γ
†
nσ 〉, H<

σ (m,n) = i〈γ †
n−σ γ

†
mσ 〉,

H̄>
σ (m,n) = −i〈γm−σ γnσ 〉, and H̄<

σ (m,n) = i〈γn−σ γmσ 〉
according to

Gr
σ (i,j ) − Ga

σ (i,j ) = G>
σ (i,j ) − G<

σ (i,j )

= ui(G>
σ − G<

σ )u∗
j + vi(G>

−σ − G<
−σ )v∗

j

−σv∗
i (H>

σ − H<
σ )u∗

j − σui(H̄>
−σ − H̄<

−σ )vj, (2)

and

G<
σ (i,j ) = u∗

jG<
σ u∗

i − vjG>
−σ v∗

i + σu∗
jH>

σ v∗
i − σvj H̄<

−σ ui .

(3)

Solving for Green’s functions across the system in the presence
of the leads (Appendix A), leads to the final, exact result

J = e

h

∑
σ

∫
dε[fL(ε) − fR(ε)]

× Tr
[(

�
χ
u∗u + �

χ
v∗v

)
Ga

σ

(
�

−χ
uu∗ − �

−χ
vv∗

)
Gr

σ

+ (
�

χ
uv − �

χ
vu

)
Ga

σ �
−χ
v∗u∗Hr

σ + (
�

χ
u∗v∗ − �

χ
v∗u∗

)
G†a

σ �
−χ
uv H†r

σ

+ σ�
χ
uu∗Ha

σ

(
�

−χ
v∗u∗ −�

−χ
u∗v∗

)
Gr

σ +σ�
χ
vv∗H†a

σ

(
�

−χ
vu −�

−χ
uv

)
G†r

σ

+ σ
(
�

χ
uu∗ + �

χ
vv∗

)(
Ha

σ�
−χ
v∗u∗Hr

σ + H†a
σ �

−χ
uv H†r

σ

)]
, (4)

where �
χ
uv(m,n) = 2π

∑
i,j,a∈χ ρa(ε)YaiYaj ui(m)vj (n) is now

in the transformed basis set. This is written in a form describing
transmission from the left-hand side to the right-hand side of
the sample. We will show in Sec. IV A that it therefore exposes
the rise of resistance due to the suppression of correlations
between the left- and right-hand sides of the superconductor.

We note that deep in the SC regime where the SC gap
obeys � � Y , and in the case where the leads inject electrons
within the gap such that eV < 2�, we can make a perturbative
expansion in small tunneling Y . This yields the simple
expression for the current

J = e

h

∑
σ

∫
dε[fL(ε) − fR(ε)]

× Tr
[(

�
χ
u∗u + �

χ
v∗v

)
G̃a

σ

(
�

−χ
uu∗ − �

−χ
vv∗

)
G̃r

σ

]
. (5)

Here G̃ are Green’s functions calculated in the absence of the
leads. This equation has direct Y 4 dependence on the tunneling
matrix element, with neglected higher-order contributions of
order ∼(Y/�)6, as it describes Cooper pairs tunneling through
the contact barrier. We shall show later that this contribution
is precisely what is predicted for the current27 according to
the BTK formula,11 and notably, as the leads inject electrons
only into the gap, there is no normal current, but only Andreev
processes allow the flow of current. The perturbative form
of Eq. (5) offers two important computational advantages.

First, it is considerably less resource intensive to calculate,
because Green’s functions are diagonal so it does not demand
summations over separate variables. Second, it does not require
the expensive matrix inversion embodied in Eq. (A2) to find
the general equation for the current. Due to its usefulness we
also note that an analogous expression can be derived for the
normal current when injecting electrons outside of the gap

J = e

h

∑
σ

∫
dεTr

[
fL(ε)

(
�

χ
u∗u + �

χ
v∗v

)
− fR(ε)

(
�

χ
u∗u + �

χ
v∗v

)]
ImGr

σ , (6)

where Im stands for the imaginary part. Since this term
represents the normal current, it has a direct Y 2 dependence on
the tunneling matrix element. Though they offer a considerable
computational advantage, these perturbative formulas cannot
be used on the border of the superconductor-insulator transi-
tion where the superconductor gap breaks down and � < Y .
Therefore, unless specified, we use the full expression for the
current, Eq. (4), in our numerical calculations.

B. Current and voltage maps

Equation (6), with a coefficient of Y 2, describes the normal
current that enters and leaves the system as single electrons,
whereas Eq. (5) with a coefficient of Y 4 corresponds to a tun-
neling supercurrent. However, the normal and supercurrent can
interchange inside the sample. To understand the microscopics
behind phenomena in the disordered superconductor, it will be
advantageous to be able to probe the spatial distribution of
the current and its normal or SC nature through the sample.
Therefore, here we extend our formalism to map out the flow of
current within the sample. To calculate the current distribution
map we use the general expression for the current crossing a
single bond28,29 from site i to j

Jij = 2e

h

∑
σ

∫
dε

2π
[tijG<

σ (j,i) − tj iG<
σ (i,j )] . (7)

Transforming again into the diagonalized basis, the local
current is

Jij = 2e

h

∑
σ

∫
dε

2π
Tr

{[
�

ij
u∗u−�

ij
v∗v

]
G<

σ −[
�

ijT
uu∗ −�

ijT
vv∗

]
G<

σ

+ σ
[
�

ijT
v∗u∗ − �

ij
u∗v∗

]
H<

σ + σ
[
�

ijT
uv − �

ij
vu

]
H̄<

σ

}
, (8)

where �
ij
uv(m,n) = tij ui(m)vj (n). As before, the normal G<

and anomalous Green’s functions H< are calculated in Eq. (A3)
in the presence of the leads. Moreover, we note that the current
comes in two flavors, the contribution to the current from the
normal Green’s function G< is associated with the normal
current and that from the anomalous Green’s function H<

gives the Cooper pair current. In Sec. IV F we verify that this
intersite current yields the correct net conservation of charge.
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To provide an additional probe into the nature of the
superconductor-insulator transition we extend the formalism
to map the local chemical potentials across the sample. This
should reveal any weak links and the location of the sources
of resistance in a sample. To determine the local effective
potential at a specific site we add a weak link from that site to
a third lead (a “tip”). The tunneling current from the tip into the
sample is then calculated, and the chemical potential of the tip
adjusted until that current flow is zero. This chemical potential
thus corresponds to the effective local chemical potential in
that site. To calculate the current flow into the tip we first
evaluate the full Green’s functions G in the sample in the
presence of a voltage drop between the left and right reservoirs,
Eq. (A2), but without the tip. We then use the perturbative
formula for the current, Eq. (5), but with one lead representing
the left- and right-hand leads, and the other the perturbative
tip. This process is repeated for each site in the sample (due to
the perturbative nature of the tip, this calculation can be done
simultaneously for all sites). In Sec. IV F we demonstrate how
maps of the potential can expose weak links in the sample and
help diagnose the microscopic mechanisms that give rise to
resistance.

III. MODEL AND NUMERICAL PROCEDURE

In the previous section we developed an exact analytical
formula for the current through an arbitrary intermediate
region, which may include SC correlations. We now use a
specific model to describe this SC region: the negative-U
Hubbard model, a lattice model that includes on-site attraction
and may include disorder, orbital and Zeeman magnetic fields,
and even long-range repulsive interaction (which we will not
deal with in this paper). The Hamiltonian is

ĤHubbard =
∑
i,σ

εiσ c
†
iσ ciσ −

∑
i

Uic
†
i↑c

†
i↓ci↓ci↑

−
∑

〈i,j〉,σ
(tij c

†
iσ cjσ + t∗ij c

†
jσ ciσ ) , (9)

where εiσ is the on-site energy, tij the hopping element
between adjacent sites i and j , and Ui the onsite two-particle
attraction, which is taken to be uniform and i independent
in this paper. An orbital magnetic field can be incorporated
into the phases of the hopping elements tij , while a Zeeman
field splits the spin-dependent on-site energies εiσ . Unless
noted differently, all tij ≡ t are taken be equal. In this
paper we will only deal with orbital fields. To account for
disorder, εi will be drawn from a Gaussian distribution with
characteristic width W . The intersite spacing is a. Unlike, for
example, the disordered XY model, the negative-U Hubbard
model can lead to a BCS transition, a BKT transition, or a
percolation transition, and thus this choice is general enough
not to limit a priori the underlying physical processes.
Importantly, the model includes the fermionic degrees of
freedom which may be relevant to some of the experimental
observations.

Calculation of correlation functions, for example, Green’s
functions that enter the current formula, requires thermal
averages. To perform the thermal average we need to decouple

the quartic interaction term, so we employ the exact Hubbard-
Stratonovich transformation

exp

[∫ β

0
dτ

∑
i

Uic
†
i↑c

†
i↓ci↓ci↑

]

=
∫

D�D�̄ exp

[ ∫ β

0
dτ

∑
i

−|�i(τ )|2
Ui

+�i(τ )c†i↑c
†
i↓ + �̄i(τ )ci↓ci↑

]
, (10)

which is basically a Gaussian integration [D� ≡ τ,id�i(τ ),
where the product runs over all times and all sites]. Note that
the field �i(τ ) is just an integration variable that decouples the
two-body term in the SC channel, and should not be confused
with |Ui |〈ci↓ci↑〉. Similarly, one introduces the integration
fields ρiσ (τ ), that couple to the spin density30 〈c†iσ ciσ 〉, and
leads to an additional term −∑

i,σ |Ui |ρi−σ (τ )c†iσ ciσ in the
action (which, in the mean-field approximation gives rise to
the Hartree-Fock contribution).

The Hubbard-Stratonovich decoupling in both the � and
ρ channels31 not only provides access to both soft degrees of
freedom, but also the saddle-point solution gives the standard
mean-field results for those fields and furthermore guarantees
that the action expanded to Gaussian order corresponds to
the random phase approximation.32,33 Since our main interest
lies in thermal effects, for example, the thermal BKT phase
transition or thermal activation of vortices, we now neglect
quantum fluctuations (τ dependence) of the auxiliary field �.
One can then write the partition function for the Hubbard
model as25,26

Z = Tr[e−βĤHubbard ] =
∫

D(�,ρ)Trf [e−β ∧HBdG(�,ρ)], (11)

where the latter trace is over all fermionic degrees of freedom.
HBdG(�,ρ) is the Bogoliubov-de Gennes Hamiltonian with a
given set of � and ρ, where these vectors designate the set of
values of these parameters on all lattice sites:

ĤBdG =
∑
i,σ

(εi + ρi)c
†
iσ ciσ −

∑
〈i,j〉,σ

(tij c
†
iσ cjσ + t∗ij c

†
jσ ciσ )

+
∑

i

(�ic
†
i↑c

†
i↓ + �̄ici↓ci↑) +

∑
i

|�i |2 + ρ2
i

Ui

. (12)

Given the explicit form of the diagonalizable BdG Hamil-
tonian, we can calculate expectation values and correlation
functions,

Tr[ρ̂ Ô] =
∫

D(�,ρ)e−βE0

N∑
n=1

e−βEn〈n|Ô|n〉 , (13)

where the sum is taken over all positive eigenvalues (quasi-
particle excitations) of the BdG Hamiltonian. In our simu-
lations we calculate the current and so replace Ô with the
expression for the current in Eq. (4). Here E0, En, and |n〉
are the ground-state energy, excitation energies, and excitation
wave functions, respectively, for the BdG Hamiltonian, for
the specific configuration of � and ρ. It is straightforward
to see that in this case, the saddle-point approximation
of the partition function gives rise to the mean-field BdG
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equations (and then �i indeed corresponds to |Ui |〈ci↓ci↑〉).
The calculation of the full integral, using the (classical) Monte
Carlo approach,34 includes also the contributions of thermal
fluctuations of the amplitude and phase of the order parameter.
In using the Monte Carlo summation, we take a statistical
average over different field configurations, which introduces
statistical uncertainty into our observables. This uncertainty
gives rise to the 1σ error bars on the numerical results in
this paper. In Appendix B we detail how we improve on
contemporary methods to perform the Monte Carlo calculation
in O(N1.9M2/3) time, where N is the number of sites and M

the order of a Chebyshev expansion.

IV. APPLICATIONS

We have derived a new expression for the current flow
through a superconductor, and demonstrated how to calculate
the current in mesoscopic systems. Before applying it to
understand and predict novel phenomena, it is important to
verify it across a variety of exemplar systems, where one
can compare against well-established theories. At the same
time, as we are using ab initio methods we present the first
comparison between the underlying microscopic variables
and the phenomenological parameters often used to describe
these effects. As the main novelty of the approach is the
inclusion of thermal fluctuations, we pay particular attention
to verifying the formalism in two dimensions, especially
looking for signatures of the BKT transition driven by phase
fluctuations. In Sec. IV A we probe the current through a clean
superconductor, and check that we can recover the BTK results
for the contact resistance. A key effect in such systems is
Josephson tunneling, so in Sec. IV B we study the temperature
dependence of the resistance of a single Josephson junction.
Dephasing (by temperature averaging) and decoherence (by
electron-electron interactions) are studied in Sec. IV C. In
Sec. IV D we examine the temperature dependence of the
resistance in the vicinity of the BKT transition and compare
to analytical results. In Sec. IV E we introduce finite magnetic
field (flux) and probe the Little-Parks effect in the presence of
disorder. Finally, in Sec. IV F we demonstrate how plotting
maps of the current and potential across the system can
illuminate the microscopic processes at the superconductor-
insulator transition, finding that the rise in resistance is driven
by the emergence of weak links. Throughout we use an
attractive interaction of U = 1.6t to describe the SC region.
To avoid the Van Hove singularity at half filling35 we study
systems at an average 38.7% filling, except for Sec. IV C
where we focus on wires with a low filling fraction of 20%.
All the calculations were carried out in the linear response
regime, with a small potential difference of eV = 0.02t . These
parameters gave a typical superconducting order parameter at
T = 0 of � = 0.32t . Systems were typically two dimensional,
so a single lattice site thick, 12 lattice sites wide, and 48 lattice
sites long.

A. Clean systems

Well below the BKT transition, where thermal fluctuations
of the pair amplitude and phase may be neglected, the
resistance through a clean SC region is solely due to the

contact resistance at the two interfaces. This resistance has
been calculated by Blonder, Tinkham, and Klapwijk.11 By
assigning a tunneling strength 1/Z to the barriers, they showed
that if the intermediate sample is in the normal state, then
the current is purely due to electrons tunneling across the
barrier, and the transmission coefficient is given by 1/Z211.
On the other hand, if the sample is in the SC state, then the
SC gap, �, inhibits electrons from directly tunneling into
it. Instead, these electrons Andreev tunnel accompanied by
a hole. For a large barrier Z � 1 the transmission coefficient
becomes �2/4Z4(�2 − E2),11 where E is the electron energy.
Electrons with an energy outside of the gap can either tunnel
alone with a corresponding normal transmission coefficient
(E + √

E2 − �2)/(2Z2
√

E2 − �2), or Andreev tunnel with
an accompanying hole, and have a transmission coefficient
of �2/4Z4(E2 − �2). We first compare the results of our
numerical calculations to these BTK formulas, and then
demonstrate that for the simple case of a single SC site,
the BTK results can be derived analytically from our current
formula. Second, we go beyond the low-temperature regime
accessible with standard theory by studying the situation at
higher temperature where fluctuations become important.

To verify that the model recovers the correct behavior at
the tunneling barrier, we focus on the weak coupling limit. In
this limit, once a Cooper pair tunnels through the first barrier,
it has an equal probability of continuing to either the left or
the right lead, and consequently the current through the double
barrier will be half that of a single barrier.27 For a long enough
system the finite bias and temperature smear any Fabry-Perot
type interference. To study the effect of the changing order
parameter �, we focus first on a low-temperature system,
where � is indeed equal to the pair correlation |U |〈ci↓ci↑〉,
vary the interaction strength U , and monitor the various
components of the tunneling current. For a pristine system
with W = 0, all of the resistance stems from the two tunneling
barriers, and we verified that the current flow was independent
of the length of the SC region. A relatively large potential bias
of eV = 0.1t was applied across the leads. This allows us to
explore all tunneling processes, either for � < eV or � > eV

by changing the interaction parameter U and as a result �.
Our results for the conductance are depicted in Fig. 2(a), and
Z ≈ 1.4. At � = 0 the current is entirely normal. As shown
in Fig. 2(a), increasing � gives rise to a resonance in the
Andreev current when E = �. At the same time the normal
current falls as fewer electrons can be directly injected outside
of the SC gap. As � increases still further, so that the SC gap
exceeds the chemical potential difference, resonant electrons
are no longer injected into the divergent density of states at
the SC gap, and the Andreev current falls. In agreement with
the BTK calculation, at large � the Andreev current adopts
its final value, 1/4 of the normal � = 0 conductance, and no
normal current flows.

Figure 2(b) depicts our results for higher temperatures,
signaling the limitation of the BTK formalism. The numerical
results are compared to the prediction of the BTK formalism,
where the effects of temperature are taken into account in
the mean-field reduction in � and the broadening of the lead
distribution function. The evident reduction of the calculated
resistance, compared to the BTK prediction, indicates the
importance of thermal fluctuations in determining the resis-
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FIG. 2. (Color online) Variation of conductance G with the
average superconducting order parameter U〈c↑c↓〉 as the interaction
strength is increased. The normal current is shown in blue and the
supercurrent (Andreev) in red. The numerical results are shown with
error bars, and BTK theory by the solid line. The green vertical
line denotes the chemical potential difference across the sample. The
upper plot (a) is at “zero” temperature, with no thermal or quantum
fluctuations, and the lower (b) at T = 0.01t , showing a marked
difference between the mean-field BTK formula and the numerical
data that include thermal fluctuations.

tance. In Sec. IV D we discuss in more detail the temperature
dependence of the resistance due to phase fluctuations.

As a last point in this section, we now demonstrate explicitly
that in the weak coupling limit Y  1, for the special case
when the SC region consists of a single site, the BTK
results can be derived from our formalism straightforwardly.
In the linear response regime where a potential V is put
across the sample such that injected electrons are entirely
within the SC gap, we find that the normal current is zero
and we recover the analytic result for the Andreev current,
J = e2V �2/8hZ4(�2 − μ2), where Z = √

μ/πν/Y , μ is the
chemical potential, and ν is the density of states at the Fermi
surface. If the sample is normal we find that there is no Andreev
current, and the normal current is J = e2V/2hZ2. These
results are what would be expected from the BTK formalism,
and coupled with the numerical results they confirm that the
formalism properly treats tunneling between the leads and the
SC sample.

B. Josephson junction

Another simple example that we wish to explore is a single
Josephson junction, which will be modeled in the negative-U
Hubbard model by an intermediate region consisting of two
clean superconductors (W = 0), between which we insert a
weak link where the nearest-neighbor hopping element t ′ is
small (t ′  t), see Fig. 3. Studying this system will allow us
to probe how a phase difference across a barrier can affect
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G
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kBT/t

Free current
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Intermediate coupling

Weak coupling

FIG. 3. (Color online) Upper: Setup to model the Josephson
junction. Traversing the center of the SC region is a Josephson
junction (opaque cuboid). The junction is modeled by the reduction
of the matrix hopping elements to t ′ = 0.005 (brown interconnects)
compared to t = 1 in the superconductor. The two metallic leads are
shown on the far left and right (in blue), and the lead-superconductor
tunneling barrier by the gray cuboids. Lower: The variation of
conductance with temperature for the Josephson junction. Results
of the numerical computation (points) and of the theoretical model
(solid lines) are shown for a weak, intermediate, and strong coupling
between the two superconductors.

the current flow through it. We first set t ′ = 0 to disconnect
the left- and right-hand sides, and numerically evaluate the
current through the central region. This is by no means trivial.
The current formula, through the anomalous Green’s function,
allows an absorption of a pair from the incoming lead into
the condensate on one side of the barrier, and an emission
of another pair into the outgoing lead. This current, however,
will depend on the phase difference between the SC order
parameter on the two sides of the barrier. For t ′ = 0, i.e., an
infinite barrier, the phases of the left- and right-hand order
parameter are uncorrelated, and thus all phase differences are
degenerate in energy. Therefore, the current vanishes, but only
after averaging over all states, which is done automatically in
our numerical procedure. In the other limit, when the hopping
matrix elements are the same as the hopping through the rest
of the superconductor, t ′ = t , the phase of the superconductor
is locked, so we see the standard free SC current flow.

We now model the situation with a moderately sized central
barrier. This splits the superconductor in two, but crucially
a Josephson supercurrent flows between the two sides, thus
allowing the current to flow with no additional resistance.
The current J (T ) = JJ(T ) cos(φL − φR) is maintained by the
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phase difference φL − φR between the left- and right-hand
superconductors, and the maximum value of the dissipa-
tionless current is the critical Josephson current JJ(T ) =
(π |�|/2eRn) tanh(|�|/2kBT ),36 where Rn is the resistance of
the central barrier when the system is in the normal state.

To numerically study the thermally driven disruption of the
Josephson current, it is vital that this breakdown occurs before
the BKT transition occurs, which as we show in Sec. IV D,
by itself reduces the current flow through the system. We
thus use a small hopping element for the tunneling barrier
of t ′ = 0.005t , which has a large Rn and therefore small
Josephson current JJ. In Fig. 3 we show the current as a
function of temperature, in the presence of the weak link.
When there is no voltage drop across the Josephson junction,
the current JM that flows through it is given by JM = V/R,
where R is the contact resistance to the normal leads. This
current is maintained as long as the critical Josephson current
JJ is larger than JM. As temperature is increased, thermal
fluctuations will weaken the phase lock between the two SC
regions, and the critical current is reduced. When JJ is reduced
below JM, a finite voltage develops across the Josephson
junction. This drives the phase difference across the junction
to increase with time, which in turn leads to an oscillating
current. This current has a non-zero time average,1 leading
to a total resistance RJJ(T ) = R/(1 − √

1 − λ2), where λ =
JJ/JM < 1.1 This time-averaged current is exactly the quantity
calculated in our Monte Carlo procedure. Figure 3 depicts a
comparison between this simple model and our full numerical
calculation, with reasonable agreement.

The critical current can be modified by varying the
resistance of the central barrier, Rn. The intermediate case has
Rn = 0.075h/e2, the stronger coupling with Rn = 0.06h/e2 is
obtained by lowering the barrier to t ′ = 0.01t , and the weaker
coupling with Rn = 0.085h/e2 by widening the original
barrier (t ′ = 0.005t) to four lattice sites. This wider barrier
weakens the coupling between the superconductors so the
Josephson resistance emerges at a lower temperature. A
lower barrier strengthens the coupling thereby raising the
temperature required for the emergence of resistance. Both
these regimes are consistent with the simple model. We also
verified that at very strong coupling where the temperature
required for the breakdown of phase coherence becomes of
the order of the BKT transition temperature, this simple
model for the current flow no longer captures the full physics
of the system. This study validates that our formalism can
correctly model the presence of the Josephson supercurrent
across the weak link introduced into the superconductor, and
can therefore be used to model disordered systems that may
contain multiple SC grains.

C. Decoherence and dephasing

The issue of decoherence and dephasing plays a significant
role in transport at low temperatures. Here we define decoher-
ence as the many-body phenomenon that leads to the loss of
coherence via interactions among the electrons or interactions
with the environment. On the other hand, dephasing can occur
in a noninteracting system, and emerges from the fact that due
to the finite temperature, electrons possess a range of energies,
of the order of kBT . Electrons of different energies acquire

different phases along their respective trajectories, and if these
phases differ by 2π or more when their energy changes by
kBT , then interference phenomena will average out to zero.

Decoherence. The effects of decoherence due to electron-
electron interactions are more profound in one-dimensional
wires in the normal phase. Since the original Hubbard model
employed in this calculation [Eq. (9)] is an interacting
model, one expects decoherence to arise naturally from the
calculation. However, though the original formula for the
current is exact, the approximation employed above [Eq. (13)]
does not include quantum fluctuations. This means that it
neglects the imaginary component of the self-energy which
corresponds to damping due to interactions, and the resulting
decoherence. To test the effects of such decoherence due to
many-body interactions, we introduce into the normal Green’s
function for momentum k (as here we study a wire in the
normal phase), by hand, the self-energy

lim
δ→0

U 2

2π4

∑
p,q

n(ξp)[1 − n(ξp−q)][1 − n(ξk+q)]

ω + ξp − ξp−q − ξk+q − iδ
, (14)

which is the lowest-order contribution to the single-particle
self-energy, and where ξp are the momentum energy eigen-
states of the Hamiltonian.

A similar approach37 has been applied to interacting elec-
trons in a continuous one-dimensional system with repulsive
contact interactions (the second-order contribution to the
self-energy does not depend on the sign of the interaction). In
this case, it has been shown, for wires with parabolic dispersion
and chemical potential μ, that this damping leads to a change
in the distribution function and reduction in the conductivity
by a factor of 1 − π2(kBT/μ)2L/12[L + � exp(μ/kBT )],37

where the wire length L is long enough that the smear-
ing of the Fermi surface due to scattering (which occurs
over the relaxation length scale �37) outweighs that due to
temperature. For sufficiently long wires L � � exp(μ/kBT ),
the reduction in conductivity becomes length independent,
1 − π2(kBT/μ)2/12.

To compare our work against this theory (which relies on
the parabolic dispersion), we focus on a system with a low
filling fraction of 20%, near the bottom of the band, and
set the disorder to W = 0.1t . We employ the perturbative
expression for the current, Eq. (6), to give us access to
long wires with L � �. In the upper panel of Fig. 4 we
show the fall in current, as a function of length, due to
the inclusion of self-energy at kBT = 0.17μ, here � ≈ 27a.
The overall change of ∼0.5% is small due to the Pauli
blocking of scattering processes near the Fermi energy. We
see reasonable agreement with the model over a range of
length scales. The middle panel of Fig. 4 depicts the change
in current with temperature for a system of a fixed length. We
highlight the agreement to the expected variation in the fall in
conductance with temperature.37 At low temperatures (kBT 
μ) the damping is severely Pauli blocked so the characteristic
damping length scale exceeds the system length, and the
current correction 1 − π2(kBT/μ)2 exp(−μ/kBT )L/12� is
exponentially suppressed. As temperature increases, the Fermi
liquid T 2 behavior starts to dominate the correction to the
current. At high, usually unphysical temperatures (kBT � μ),
numerics see a smaller current shift than predicted by theory
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FIG. 4. (Color online) Upper: Relative fall in current in a one-
dimensional sample due to the introduction of self-energy at kBT =
0.1μ. The black points show the numerical results, and the solid
red line highlights the expected theoretical variation with length,37

where J0 is the current that flows when impeded solely by the contact
resistance. Middle: Relative change (�J ≡ J0 − J ) in current as a
function of temperature in a one-dimensional normal phase sample.
The black points show the numerical results, and the red solid line
the expected model variation. The two green dashed lines show the
exp(−μ/kBT ) and T 2 behavior. Lower: Changing current in the
presence of a SC phase in a two-dimensional sample. The vertical
green dashed lines show the BKT and normal phase transitions.

as the details of the specific Hubbard band dispersion versus
the parabolic dispersion in which the model was developed
become important.

In the lower panel of Fig. 4, we examine the effect of a SC
phase on decoherence. At low temperature, the presence of the
SC gap suppresses many-body scattering processes. However,
when the temperature is raised above the BKT phase transition,
scattering events are possible, though they have a smaller
impact on the current than in the normal phase, due to the still
finite local pair correlations. Above the mean-field BCS phase
transition the current follows the expected parabolic profile as
in the normal phase. Thus we have demonstrated that while
quantum fluctuations, as they affect decoherence, can be taken
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FIG. 5. (Color online) Fall in conductance with length in a
noninteracting one-dimensional wire with disorder W = 0.2t at two
different temperatures. The straight (red) trend lines show a linear
drop off in conductance with length, and the curved (green) an
exponential decay.

into account in our formalism, their effect on the current, for
the range of parameters studied here, is usually small at �1%.
We are thus justified in neglecting them in this study.

Dephasing. Having observed decoherence in the sample,
we now turn to study dephasing due to thermal averaging. To
verify that our formalism captures this important phenomenon,
we study the length dependence of the conductance in
noninteracting systems. We first verified, for a noninteracting
clean system, that the net macroscopic current increases
by 2e2/h for each new conduction channel introduced (not
shown), independent of length. Setting the amplitude of
the disorder to W = 0.2t , we show in Fig. 5 the fall in
conductance with length at two different temperatures. At
T = 0 there is an initial linear fall in conductance over length
scales smaller than the localization length ξ ≈ 93a, and an
exponential fall at greater lengths. This is in accordance with
the expectations of Anderson localization:38 for length scales
below the localization length, the conductance changes as a
power law of the length, while it decays exponentially when
the length becomes larger than the localization length. At
kBT = 0.01t , on the other hand, dephasing causes different
parts of the system to be incoherent with respect to the
others, causing the conductance to fall linearly with inverse
length, as expected from a classical system. This observation
confirms that the formalism naturally incorporates the physics
of dephasing in disordered systems.

D. Variation of resistance with temperature

We have now verified that our formalism captures the basic
phenomena of contact resistance in Sec. IV A, Josephson
coupling in Sec. IV B, and dephasing and decoherence in
Sec. IV C. With these key tests complete, we are now
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FIG. 6. (Color online) (a) Variation of resistance with temperature for two different values of disorder calculated numerically (points). The
red solid line shows the theoretical low-temperature behavior, and the blue dotted line the theoretical high-temperature behavior. The dashed
vertical green lines show the BKT TKT and mean-field Tc temperatures. The insets show the variation of the superconducting order parameter
U〈c↑c↓〉 renormalized by its T = 0 value. (b) Numerical results (black points) and the deduced linear length dependence (red solid line) of
the resistance for three different temperatures (i) T < TKT, (ii) TKT < T < Tc, and (iii) T > Tc. The L → 0 values correspond to the contact
resistance, which is eliminated in the values plotted in (a).

ideally poised to study further effects within the super-
conductor, starting with the temperature dependence of the
conductivity and its relation to the BKT transition. With
increasing temperature a two-dimensional superconductor
undergoes a BKT transition39 characterized by the emer-
gence of vortices across the system, leading to the loss of
global phase coherence. At a higher (mean-field) temperature,
the SC order is completely suppressed and the system
loses the SC correlation even locally. To study how this
transition is reflected in the current flow, we performed
numerical simulations on a two-dimensional SC system at
several different temperatures. Simulations were performed
for two different levels of disorder, W = 0.1t and W =
0.2t , to determine how the transition and current flow are
modified by the normal-state resistance, and extrapolated
over length to remove the effects of the contact resistance
[Fig. 6(b)].

At temperatures below the BKT transition, in Fig. 6(a),
the resistance is zero as the system is in the SC state. At
temperatures above the BKT transition, vortices and anti-
vortices can easily unbind, though they may be partially pinned
by disorder. The finite conductance G of a sample in this case
has been shown by Halperin and Nelson21 to be given by

G = 0.37Gn(ξ+/ξc)2 , (15)

where Gn is the normal-state conductance, ξc is the SC
coherence length, and ξ+ is the SC order correlation length,
which diverges at TKT. The critical behavior at temperatures
near the BKT transition T � TKT leads to the conductance

G = 0.37Gnb
−1 exp[

√
b(Tc − TKT)/(T − TKT)] , (16)

where b is a number of order unity. At temperatures higher
than the (renormalized) mean-field critical temperature Tc, the
conductance is given by the Aslamasov-Larkin theory21,40

G = 0.37Gn(Tc − TKT)/(T − TKT) . (17)

Finally, we can also estimate the crossover between these
two regimes by noting that the difference between the
Kosterlitz-Thouless and mean-field transition temperatures
critical regime is given by21

Tc − TKT ≈ 0.17e2Tc/h̄Gn . (18)

The difference between these two temperatures therefore
widens with falling normal-state conductance.

In Fig. 6(a) we depict the variation of resistance with
temperature above the BKT transition, showing the two
types of dependence on temperature as is expected by
theory. At W = 0.1t we have TKT = 0.0091t , Tc = 0.11t ,
Gn = 17.6e2/h, and b = 0.47, whereas at W = 0.2t we have
TKT = 0.0046t , Tc = 0.16t , Gn = 22.2e2/h, and b = 0.26.
The rising disorder reduces the normal-state resistance Gn, and
also enhances the difference between the Kosterlitz-Thouless
and mean-field transition temperatures, which agrees with
Eq. (18) within 20%. The high-temperature Aslamasov-Larkin
expression for the conductance persists well above the the
mean-field critical temperature, where the insets show that
the SC state has been totally suppressed. Finally, when the
temperature is of the same order as the bandwidth, kBT ∼ t ,
the resistance in Fig. 6(a) increases superlinearly as the Fermi
distribution becomes smeared across the whole band structure.
Thus, we have been able to demonstrate that our formalism can
calculate the resistance from a microscopic model, allowing
us to derive the phenomenological parameters from the
model.
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E. Little-Parks effect

Varying an applied magnetic field has long been an impor-
tant experimental probe of the properties of a superconductor.
It is therefore imperative to verify that the current formula
developed here, coupled with the Hubbard model for the
superconductor, is able to accurately model the effects of an
applied magnetic field. In the Hubbard model the effects of the
magnetic field are incorporated, via the Peierls substitution,
into the phases of the hopping elements, tij → tij e

2πiφij /φ0 ,
where φ0 = hc/e is the (single-electron) quantum flux, and
the phases φij are defined such that their integral over a closed
trajectory is equal to the magnetic flux threading the surface
spanned by the trajectory.

To check whether this procedure captures the effect of
an orbital magnetic field, we apply it to a clean hollow
cylindrical superconductor, of radius r , such as that shown
in Fig. 7, threaded by magnetic flux φ. As demonstrated
by Little and Parks,41 the flux suppresses superconductivity
and the transition temperature falls periodically with the flux.
This is often probed by measuring the falling conductance of
the cylinder near to the SC transition temperature.41–43 The
energy of electrons in the cylinder increase with trapped flux
φ as h̄2(n + 2φ/φ0)2/2mr2, where the integer n is chosen
to minimize the energy. This results in a periodic parabolic
variation of the electron energy with flux and thus a parabolic
periodic oscillation in the SC transition temperature �Tc =
h̄2(n + 2φ/φ0)2/16mr2.41 Therefore, for a cylinder held just
above its SC transition temperature, the change in the transition
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(φ
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0)

2φ/φ0

T = 0.1t

T = 0.03t

FIG. 7. (Color online) Upper: Schematic of the cylindrical wire
within the negative-U Hubbard model. The left- and right-hand
metallic leads are shown in blue, from which electrons can tunnel
through the gray toroids into the central SC region, which is shown
in red. The magnetic flux threading the cylinder is shown as a green
arrow. Lower: Variation of conductivity with flux. The computational
points are (+) for T = 0.1t , where the data reasonably fit the
mean-field Little-Parks model (red solid line), and (×) for T = 0.03t ,
well below the mean-field transition temperature Tc � 0.09t , where
the numerics is best fit by the sinusoidal blue dashed line.

temperature with increasing flux results in a similar variation
of the conductance with flux, G(φ) = [G0 − �G minn(n +
2�/φ0)2], leading to a minima in the conductance at every half
integer Cooper-pair flux quantum φ = (n + 1/2)φ0/2. This
has indeed been observed experimentally.41

In Fig. 7 we first take a cylinder held just above its mean-
field SC transition temperature at T = 0.1t > Tc � 0.09t and
numerically evaluate the conductance as a function of the
magnetic flux. The reasonable agreement with the above
formula (red line, with G0 = 23.5e2/h and �G = 2.8e2/h)
demonstrates that the formalism correctly picks up the effects
of an applied magnetic field. The deviation from the parabolic
predictions of mean-field theory at every half flux quantum is
due to thermal fluctuations, which are neglected by the stan-
dard mean-field approach. In order to explore the consequences
of thermal phase fluctuations further, we take a cylinder held
well below its mean-field SC transition temperature, but above
the Kosterlitz-Thouless transition temperature at T = 0.03t >

TKT � 0.01t . According to conventional mean-field theory the
system is superconducting whatever the threaded flux, but
when phase fluctuations are taken into account, thermally
excited phase slips cause the system to have a finite resistance.
As a phase fluctuations are enhanced by the flux, we again
see a periodically varying conductivity, though here it is
better fitted with a sinusoidal curve. The periodically varying
conductivity has a significantly lower amplitude than we saw
at higher temperature, showing that though the threaded flux
can encourage phase slips the effect is less profound than
when at the mean-field phase transition. The power of the
formalism to explore the interplay between phase fluctuations,
flux and disorder will be employed to study recent puzzling
observations7,8,42 in future publications.

F. Current distribution maps

One important feature of our formalism is the new capabil-
ity to map out the flow of both super and normal currents within
a sample and the changes in chemical potential which drive
that flow. Since we can now study the current flow around
impurities in the sample and expose weak links with large
potential drop, we should be able to probe phenomena in
the disordered superconductor with unprecedented detail and
trace their cause back to a microscopic mechanism. While
applications of this formalism to the outstanding problems
in this field will be described in future publications, in this
section we aim to demonstrate the usefulness of the current and
potential maps, first by further studying the Josephson junction
with a superconductor containing a central normal region, and
second by studying the temperature-driven superconductor-
insulator transition in disordered systems. However, we will
first verify our current mapping formalism by examining the
site-by-site current conservation in a clean system. As the
only sources and sinks of current are the two metallic leads, a
consistent calculation should obey charge conservation for all
of the inner sites of the sample. In Fig. 8(a) we show the average
fractional error in conservation of current

∑N
i=1 |�Ji |/JiN on

each site as we vary the number of states K included in the
calculation out of a possible N = 77 states, as prescribed in
the penultimate paragraph of Appendix B. We see that if only
5% of states are included, there is a 20% average leakage of
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FIG. 8. (Color online) (a) Average fractional error in conserva-
tion of current

∑N

i=1 |�Ji |/JiN on each site against the fraction
of total states K/N included in the calculation of the current.
(b) The changing conductance (black line with arrow toward left)
of a Josephson junction with width Lnorm of central normal region
(left axis), and the fraction of the normal current Jnorm/Jtotal (blue
dashed line with arrow toward right) flowing through the central
region (right axis).

the current. However, if we include 50% of the states in the
calculation of the current, there is a leakage of only ∼2%.
Throughout the remainder of this section we include 40%
of the states in the calculation to yield an average error of
approximately 3%.

Having verified the conservation of current, we demonstrate
what can be learned from the current maps by first studying a
modified Josephson setup consisting of two clean SC regions
with a central normal region that has U = 0. As expected
[Fig. 8(b)] the conductance decreases as the length of the
U = 0 region increases. At the same time, our formalism
allows us to monitor the current flow through the system
to see it change from SC to normal in character as the
intermediate normal region is widened, as shown in Fig. 8(b).
For a narrow U = 0 central region the two SC regions are
phase locked and predominantly a Josephson current flows
[lower panel in Fig. 9(a)]. Due to the strong proximity effect,
the system is entirely SC with no reduction in conductance.
The electrical potential is dropped on the two contact barriers,
and remains constant through the superconductor [upper panel
in Fig. 9(a)]. (For the present case of two equal contact
barriers the potential in the SC is equal to the average of
the chemical potential of the two leads). On the other hand,
when the central U = 0 region is wide, Lnorm � 4a, the two
SC regions are too weakly coupled for a Josephson current to
flow, and instead a normal current flows between the two SC
regions [lower panel in Fig. 9(b)]. This, in turn, introduces
a new resistor into the sample and the conductance drops

(a) Current map for a short barrier Lnorm = a
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(b) Current map for a long barrier Lnorm = 4a
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FIG. 9. (Color online) The upper panels in each figure show the
potential difference V (x) across the sample with total potential drop
V . The lower panels show current maps for (a) short and (b) long
normal intermediate regions. Supercurrent is shown by cyan darts
and normal current by violet pointers; the arrow length corresponds
to current magnitude and orientation to the direction of current flow.
Color density corresponds to the order parameter U〈c↑c↓〉, which has
peak value U〈c↑c↓〉0.

accordingly. Now the potential drop is mostly across the
Josephson junction [upper panel in Fig. 9(b)]; the left-hand
superconductor adopts, approximately, the potential of the
left-hand lead and the right-hand superconductor that of the
right-hand lead. Figure 8 depicts the dependence of the fraction
of the normal current, out of the total current, that flows through
the intermediate region, changing from zero for a short normal
region to unity for a long one. This situation is analogous to
current flowing between SC grains in a disordered sample, and
the analysis can reveal whether they are coherently coupled
when a supercurrent flows between the grains, or decoupled
when a normal current flows. Thus the formalism can be an
important ingredient in the study of the origin of resistance
in a disordered SC system, and will be used in a subsequent
publication, to study the anomalous magnetoresistance ob-
served in experiment.44
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(a) Superconductor-insulator transition

(b) SC side of transition, T ≈ 0.14Tc
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(c) At the superconductor-insulator transition, T ≈ Tc
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(d) Insulating side of transition, T ≈ 2.3Tc

2 4 6 8 10
1

2

3

4

5

6

7

y
a

0 c c c c 0 1

0

0.25

0.5

0.75

0 0.5 1 1.5 2 2.5

G
[e

2
/
h
]

T/Tc

(b)

(c)
(d)

FIG. 10. (Color online) (a) The fall in conductance across
the superconductor-insulator transition. Current maps on tuning
temperature from (b) a superconductor at T ≈ 0.14Tc through to
(d) an insulator at T ≈ 2.3Tc. At T ≈ Tc the superconductor-insulator
transition takes place. Supercurrent is shown by cyan darts and
normal current by violet pointers, arrow length corresponds to
current magnitude and orientation to the direction of current flow.
Color density corresponds to the order parameter U〈c↑c↓〉. Lines
of equal chemical potential are shown in white. In the current map
(b) three points of interest are labeled: (1) the normal state, (2) the
superconductor state, and (3) Josephson tunneling.

We give a glimpse of such an analysis in the case
of the superconductor-insulator transition in a disordered
superconductor with increasing temperature. For W = 0.2t ,
the system displays a superconductor-insulator transition at a
temperature Tc ≈ 0.14t . In Fig. 10(a) we show the variation
of conductance across the superconductor-insulator transition,
and below it display the current distribution maps. In Fig. 10(b)

at T ≈ 0.14Tc, there are weak-disorder driven fluctuations in
the SC order parameter, but an almost uniform supercurrent.
The potential drops mainly in the contacts, and in the sample
it is equal to the average of the two leads with small
random fluctuations. In Fig. 10(d) at T ≈ 2.3Tc, the SC
order parameter practically vanishes, there is no supercurrent,
and, due to the increasing resistance, only a small normal
current flows through the sample. The potential, as expected
for normal systems, decays linearly across the sample. At
intermediate temperatures T ≈ Tc the current map [Fig. 10(c)]
highlights the interplay of the normal and SC currents. There
is a rough correlation between regions of vanishing SC
order parameter and normal current [e.g., point (1)], on the
one hand, and finite SC order parameter and supercurrent
flow [e.g., point (2)], on the other. However, at point (3)
a small normal region separates two SC regions, thereby
forming an effective Josephson, resulting in a supercurrent
flowing through the zero SC order region. By examining
the equipotential lines we see that the normal regions,
for example, point (1), are acting as weak links; whereas
the potential drop over the SC regions is small. Thus the
overall resistance of the sample is dominated by such weak
links. The current and potential maps allow us to see the
superconductor-insulator transition developing, and we plan
to investigate in detail the relation of such a percolative
picture to the Kosterlitz-Thouless transition, as was recently
suggested.26

V. DISCUSSION

In this paper we have developed an exact formula to
calculate the current through a superconductor connected to
two noninteracting metallic leads with an imposed potential
difference. The formula was implemented with a negative-U
Hubbard model which included both phase and amplitude
fluctuations in the SC order parameter. A new Chebyshev
expansion method allowed us to solve the model and calculate
the current in O(N1.9M2/3) time, granting access to systems of
unprecedented size. The formalism also enables the generation
of current and potential maps which show exactly where the
supercurrent and separately the normal current flow through
the system.

The formalism was used to revisit a series of well-
established results, allowing us to expose the link between
the phenomenological parameters and underlying microscopic
variables. This also demonstrated the accuracy of the pro-
cedure and its ability to capture various physical processes
relevant to superconductivity in disordered systems, and to
correctly model the presence of a magnetic field and finite
temperature. These tests indicate that the formalism and
accompanying numerical solver can robustly calculate the
current through a superconductor across a wide range of
systems. In the future we plan to report on the application
of the formalism to several outstanding questions, such as the
magnetoresistance anomaly on crossing the superconductor-
insulator transition,44 the Little-Parks effect in nanoscale
cylinders,42 and dissipation-driven phase transitions in SC
wires.46
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APPENDIX A: DERIVATION OF THE CURRENT FORMULA

The formula for the current in the Bogoliubov basis set is

J = ie

2h

∑
σ

∫
dε(Tr{[fL(ε)�L − fR(ε)�R][ui(G>

σ − G<
σ )u∗

j + vi(G>
−σ − G<

−σ )v∗
j − σv∗

i (H>
σ − H<

σ )u∗
j + σui(H̄>

−σ − H̄<
−σ )vj]}

+ Tr{[�L − �R][u∗
jG<

σ u∗
i − vjG>

−σ v∗
i + σu∗

jH>
σ v∗

i − σvj H̄<
−σ ui]}) . (A1)

We need to determine Green’s functions across the sample, which must be calculated in the presence of the leads. However, as the
electrons in the metallic leads are noninteracting, we can start from the bare electronic Green’s functions for the superconductor
not coupled to the leads G̃r

eσ (m,n) = δm,n/(ε − ξm + iδ) and G̃r
hσ (m,n) = δm,n/(ε + ξm + iδ), which have energy eigenstates ξm

and δ → 0+. We then write Dyson’s equation to self-consistently include the leads(
Gr

σ
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σ

)
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. (A2)

Here gr
epχ = 1/(ε − εp + μχ + iδ) is the retarded Green’s function of the noninteracting electrons in the leads, with dispersion

εp, and {up,vp} are the matrices of the eigenstates multiplied by the lead plane wave states p at the tunneling barriers. To extract
the retarded Green’s function and its anomalous counterpart from this matrix equation, one has to perform a matrix inversion.
The Dyson equation is for the retarded and advanced Green’s functions, whereas the current formula Eq. (A1) is in terms of the
lesser and greater Green’s functions. To transform these into the retarded and advanced Green’s functions we apply the identity
G<

σ = G̃<
σ + G̃r

σ�r
σ G<

σ + G̃r
σ�<

σ Ga
σ + G̃<

σ �r
σ Ga

σ recursively to find G<
σ = (1 + Gr

σ�r
σ )G̃<

σ (1 + �a
σ Ga

σ ) + Gr
σ�<

σ Ga
σ , where �σ

is the self-energy. This recursion fixes the chemical potential of the superconductor by including tunneling to and from the
leads. This will ensure that the net number of electrons is conserved, analogous to some extensions to the BTK formalism.27

However, as the final chemical potential must be independent of the chemical potential of the uncoupled superconductor, the term
containing G̃< must be identically zero, leaving G<

σ = Gr
σ�<

σ Ga
σ , and its greater Green’s function counterpart G>

σ = Gr
σ�>

σ Ga
σ .

We now extend this identity to include the anomalous Green’s function and recover(
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. (A3)

We can now take this, the analogous expression for the greater Green’s function, and their anomalous counterparts, and substitute
them into Eq. (A1), which will yield Eq. (4).

APPENDIX B: EVALUATION OF THE MONTE
CARLO INTEGRALS

To evaluate the correlation functions [e.g., Eq. (13)], we
need to sum over all possible spatial configurations of the
auxiliary fields ρ and {�,�̄}, with each configuration carrying
the weight P (ρ,�) = exp(−βE[ρ,�])/Z . This distribution is
sampled using the Metropolis algorithm,34 which at each step
proposes a new configuration of either the field ρ or � and cal-
culates the resulting change in the total energy. If this change in
the energy is negative the step is accepted, whereas if positive it
is accepted with probability exp{−β(E[ρnew] − E[ρold])} and
exp{−β(E[�new] − E[�old])} respectively. Since the walk
over ρ is one-dimensional we choose the step size |ρnew − ρold|
to aim for 50% of the steps to be accepted, whereas the walk
over {�,�̄} covers a two-dimensional space so we choose
a step size |�new − �old| so that 35.2% of the steps will be
accepted.45 To verify the effect of fluctuations in the density
field and to check the robustness of our Hubbard-Stratonovich
decoupling scheme, in Fig. 11(e) we compare the conductance
of the superconductor-insulator transition of Fig. 10 first with
density fluctuations and second without density fluctuations

but using simply a self-consistent but static mean-field value
for the density. As the superconductor-insulator transition is
driven by fluctuations in the phase of the SC order parameter,
it is expected that density fluctuations will have little affect on
the conductance. We see in Fig. 11(e) that density fluctuations
reduce the conductance slightly, but overall the transition
remains the same. This verifies that our Hubbard-Stratonovich
decoupling scheme is robust against the inclusion of density
fluctuations. We saw similar conclusions from checking other
transitions from Sec. IV.

Central to the Monte Carlo method used to sample the
partition function is the requirement to calculate the energy
difference between two different configurations of the auxil-
iary fields, {ρold,�old} and {ρnew,�new}. For a lattice with N

sites, to calculate the energy of each proposed configuration
requires an effort of O(N3), so an entire sweep over the N sites
that make up the fields ρ and {�,�̄} requires a computational
effort of O(N4). However, a recent method developed by
Weiße47 calculates just the difference between the energy of the
configurations in a computationally efficient manner. For an
update to the ith site, a Chebyshev expansion with the 0 � m �
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FIG. 11. (Color online) (a) Estimate of the current with number of
Monte Carlo iterations, i, out of a total number I = 1000. The primary
y axis shows the best estimate of the current (blue). The secondary y

axis shows the estimated standard deviation in this estimate (green)
and idealized improvement in the accuracy (red). (b) Distribution of
50 separate current estimates at T = 0 (red) and T = 0.2Tc (green)
with best-fit Gaussian distributions. (c) and (d) Time τ to perform a
run on a 32 × 32 system renormalized by the time τ0 for a M = 512,
N = 1 system. In (c) the change with varying the system size N ,
where the blue line is for the standard O(N4) method of finding all of
the energy eigenvalues, the green is the O(N2) standard Chebyshev
expansion method,47 and the blue is the O(N1.9) extended Chebyshev
approach. In (d) the two Chebyshev expansion method approaches
are compared by varying the expansion order M; the upper (green)
line is the standard O(M) approach,47 and the lower (red) line is
the new O(M2/3) algorithm. In (e) we compare the conductivity at
the superconductor-insulator transition studied in Fig. 10 with and
without density fluctuations.

M coefficients containing 〈i|Tm(Ĥ /s)|i〉 must be calculated,
where Tm is defined by the recursion relation Tm(x) =
2xTm−1(x) − Tm−2(x), T0(x) = I, and T1(x) = x. A typical
expansion contained M = 1024 terms. Previous authors47

have calculated this site-by-site through a succession of sparse
matrix-vector multiplications, each of cost O(NM), so for
an entire sweep over the order parameter the computational
effort is O(N2M). However, here we optimize the program
so that the entire sweep can be performed in O(N1.9M2/3)
time. Rather than follow a site-by-site approach calculated
with sparse matrix-vector multiplications, we instead calculate
the matrix elements for the entire sweep simultaneously,
which necessitates performing matrix-matrix multiplications.
Provided the changes in the order parameters are small the
local changes are independent of those of surrounding sites
and we can then perform the entire sweep from this data set.
Spherical averaging further reduces the influence of changes
in the surrounding order parameters. Central to the recursion
relation for Tm is the costly calculation of xn, for 1 < n � M .
To evaluate this we divide the calculation of the M matrix
products into three stages:

(1) The lowest-order matrix products, up to xk , are sparse.
Therefore, for the elements 1 < n � k the matrix multiplica-
tions involve only sparse matrices, each of peak cost kN , and
the total cost of calculating them is O(k2N ).

(2) The second stage is to successively calculate every kth
matrix product. Each of these involves multiplying the dense
matrix xpk by the matrix xk , for integer 1 � p � M/k, which
costs O(N2.38) time.48 With M/k of these products to calculate
the total cost is O(N2.38M/k).

(3) The third stage is to construct the entire family of xn

by interpolating between the matrices xpk found in the second
stage. This is done by multiplying the dense matrices found
in the second stage by the sparse matrices found in the first
stage. Furthermore, as we need only the diagonal elements of
the final matrix, each separately costs O(kN ) and so the total
cost is O(kNM).

Having laid out the prescription of how to calculate the
matrix elements, we now examine the total cost, O(k2N +
N2.38M/k + kNM). The choice k ∼ 3

√
N1.38M will minimize

the total cost to O(N1.9M2/3 + N1.46M4/3), and as typically
N � M the cost is ∼ O(N1.9M2/3). This is a significant
improvement over the cost O(N2M) of the Chebyshev
expansion approach,47 which for the parameters employed in
our simulations corresponds to a speedup by a factor of ∼30.
Now that the matrix elements behind the Chebyshev expansion
have been found they are applied for the entire sweep.

To verify the Monte Carlo procedure in Fig. 11(a) we
first check the convergence of the estimate for the current
and that its standard error falls as the root of the number
of Monte Carlo iterations. In Fig. 11(b) we compare the
results of equilibrated Monte Carlo runs at zero temperature
from a variety of initial configurations of the order parameter
fields ρ and �. Evolution under the Metropolis algorithm
drives these starting fields into different relaxed configurations,
which because the simulations are restricted here to T = 0 are
unable to be excited out to explore different configurations.
These final configurations yield a variety of different current
values, with standard deviation of ∼ ± 2.4% of the final total
current. At finite temperature, thermal excitations can drive the
system to explore configurations around the ground state with
a narrower standard deviation of ∼ ± 0.6%. Having verified
the current statistics, in Figs. 11(c) and 11(d) we show the
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results of some timing runs that highlight the improvement
of the algorithm to O(N1.9M2/3) time over the standard
approach of calculating all the energy eigenvalues in O(N4)
time and the standard Chebyshev approach that runs in
O(N2M) time. In particular, by varying the system size, we
observe that the method of calculating all the eigenvalues
is more efficient for systems smaller than N ∼ 10, but the
new Chebyshev approach is superior for large systems. We
took advantage of this development to study large systems.
In a typical simulation on a single 2.66-GHz Intel Core 2
processor we can accumulate statistics over 10 000 different
field configurations for an 800-site system in approximately
10 h.

The Chebyshev expansion method just described represents
a zero-order approximation. However, we can extend this
method farther and calculate the lowest-order change in the
Chebyshev expansion following a shift in the configuration of
the fields ρ and � by δ. The resultant shift in the Chebyshev
expansion of Ti is found using the recursion relationships
ti = 2

s
δTi−1 + 2

s
Hti−1 − ti−2 with t0 = 0 and t1 = δ/s. This

allows the Chebyshev expansion coefficients to be extrapolated
over several configuration space sweeps, and the calculation
time falls proportionally. Spherical averaging also reduces the
influence of changes in the surrounding order parameters.
In practice it was found that up to ten extrapolation steps

could be performed, resulting in a code speedup of a factor
of 10.

Though the Chebyshev approach can be used to direct the
sampling of the system, to calculate expectation values, such
as the current, it is necessary to diagonalize the system and
determine the field configurations of its states. Formally this
requires O(N3) time. However, since the current is dominated
by the quasiparticle states near the Fermi surface, we instead
adopt the implicitly restarted Arnoldi method49 to calculate
only those particular states. We are also helped by the sparsity
of the matrix, which allows us to calculate K eigenstates in
O(KN ) time. It is usually necessary to calculate a certain
fraction of the energy states, so K ∝ N , and the total cost
is O(N2). The eigenfunctions and energies can then be used
to calculate the current for a specific realization of ρ and �

using the formalism described in Sec. II. It is then necessary to
average over successive realizations of ρ and �. However, the
contribution from successive Monte Carlo calculations might
be serially correlated, which would result in an underestimated
value for the uncertainty in the predicted value of the current.
To correct for this we calculated the correlation time through
the truncated autocorrelation function.50 We find a typical
correlation time of approximately six Monte Carlo steps,
which without autocorrelation corrections would correspond
to an underestimate in the uncertainty of a factor of ∼2.5.
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