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We investigate ferromagnetic ordering in an itinerant ultracold atomic Fermi gas with repulsive interactions
and population imbalance. In a spatially uniform system, we show that at zero temperature the transition to the
itinerant magnetic phase transforms from first to second order with increasing population imbalance. Drawing
on these results, we elucidate the phases present in a trapped geometry, finding three characteristic types of
behavior with changing population imbalance. Finally, we outline the potential experimental implications of
the findings.
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I. INTRODUCTION

Feshbach resonance phenomena provide unprecedented
control of pair interactions in degenerate atomic Fermi gases
�1,2�. This feature has allowed extensive studies of pairing
phenomena in two-component Fermi gases providing access
to the entire range of crossover between a Bose-Einstein con-
densate �BEC� of molecules and the Bardeen-Cooper-
Schrieffer �BCS� state of Cooper pairs �3–6�. Although the
emphasis of experimental investigations has been primarily
on the problem of resonance superfluidity, interacting Fermi
gases support other strongly correlated phases including itin-
erant ferromagnetism.

In solid-state condensed-matter systems, the problem of
itinerant ferromagnetism has a long history dating back to
the pioneering studies by Stoner �7� and Wohlfarth �8�. These
early investigations proposed that, at low enough tempera-
tures, a Fermi gas subject to a repulsive interaction potential
could undergo a continuous phase transition into an itinerant
spin polarized phase �9�. This Stoner transition reflects the
shifting balance between the potential energy gained in spin
polarization through Pauli exclusion statistics, and the asso-
ciated cost in kinetic energy. Subsequent studies showed that
fluctuations in the magnetization at low temperatures drive
the second-order transition first order at low enough tem-
peratures �10–15�. Such behavior is born out around quan-
tum criticality in a variety of experimental solid-state sys-
tems including ZrZn2 �16,17�, UGe2 �18�, MnSi �19–23�,
CoS2 �24�, YbRh2Si2 �25�, and SrRuO3 �26�. When subject to
a magnetic field, the attendant increase in Zeeman energy
results in the bifurcation of the tricritical point separating the
region of first- and second-order ferromagnetic transitions
into two lines of metamagnetic critical points.

In the following, we will explore the potential implica-
tions of this itinerant magnetic phase behavior on the equi-
librium properties of strongly interacting two-component
atomic Fermi gases; here we refer to the pseudospin associ-
ated with the hyperfine states characterizing the two atomic
populations. However, in contrast to the solid-state system,
the application of these ideas to the atomic Fermi gas must

address the features imposed by the trap geometry, and the
constraints resulting from the inability of particles to transfer
between different spin states �27�. As a result, in the general
case, one must consider atomic Fermi mixtures in which an
effective spin polarization is imposed by population imbal-
ance �28,29�. The potential for itinerant ferromagnetism in
atomic Fermi gases has been already addressed in the litera-
ture. The work of Ref. �30� studied a trapped system in the
Thomas-Fermi approximation. Subsequently Ref. �31� devel-
oped a diagrammatic perturbative expansion in interaction
strength to address the phase behavior of the balanced two-
component Fermi system. In the following, we will develop
a functional-integral formulation to explore the phase behav-
ior of the general population imbalanced system. As well as
providing access to the mean-field phase behavior of the sys-
tem, such an approach allows for future considerations of the
collective low-energy spin dynamics of the spin-polarized
phase. Moreover, the theory provides a platform to explore
the potential for the development of an equilibrium spin tex-
tured phase recently conjectured in relation to the solid-state
system �11,32–35�.

The paper is organized as follows: In Sec. II we derive an
expression for the thermodynamic potential of the system as
a function of the local density and in-plane magnetization
fields. To address the important effects of spin-wave fluctua-
tions on the nature of the equilibrium phase diagram, we will
explore the renormalization of the mean-field equations,
keeping those terms that are second order in the coupling
strength, g. Using this result, in Sec. III A we analyze the
phase diagram of the spatially uniform system as a function
of the interaction strength, g, and chemical-potential shift.
Finally, in Sec. III B we explore in detail the phase behavior
of the magnetic system in the atomic trap geometry.

II. FIELD INTEGRAL FORMULATION

Expressed as a coherent-state path integral, the quantum
partition function of a population imbalanced two-
component Fermi gas is given by

Z =� D� exp�− �
0

�

d�dr �
�=�↑,↓	

�̄��− i�� + �̂ − ������

− �
0

�

d�drg�̄↑�̄↓�↓�↑
 , �1�
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where �̄��� ,r� and ���� ,r� denote Grassmann fields, �

=1 /kBT is the inverse temperature, and �̂= p̂2 /2m−�. Here
we have used a pseudospin index, �� �↑ ,↓	, to discriminate
the two components. As independent particles �with no
interconversion�, the density of the two majority and minor-
ity degrees of freedom must be specified by two chemical
potentials. For convenience, it is helpful to separate the
chemical potentials into their sum and difference: �+��
for up-spin and �−�� for down-spin. In this representation,
population imbalance may be adjusted through the chemical-
potential shift, ��. Note that although population imbalance
is synonymous with a global pseudospin magnetization,
a spontaneous symmetry breaking into an itinerant ferro-
magnetic phase can still develop with the appearance of
a nonzero in-plane component of the magnetization. Finally,
we suppose that the strength of the repulsive s-wave
contact interaction, g	3�r�, can be tuned using a Feshbach
resonance.

A. Hubbard-Stratonovich decoupling

To develop an effective low-energy theory for the Fermi
gas, it is convenient to decouple the quartic contact interac-
tion by introducing auxiliary bosonic fields, 
 and �, conju-

gate to the local density ��=�↑,↓	�̄��� and magnetization

��,�=�↑,↓	�̄������, respectively, setting

Z =� D�D
D� exp�−� d�dr�g��2 − 
2�

+ �
�,�=�↑,↓	

�̄���Ĝ0
−1 + g
�	�� − ���ez + g�� · ������
� .

�2�

Here Ĝ0= �−i�t+ �̂�−1 defines the Green’s function of the non-
interacting system, and � denotes the vector of Pauli-spin
matrices. Note that, without decoupling in both the Hartree
and Fock channels, one would subsequently encounter un-
physical diagrammatic contributions to the perturbative
scheme developed below �36–38�. It is also the simplest ap-
proach that maintains spin rotational invariance of the
Hamiltonian, and leads to the correct set of Hartree-Fock
equations �39,40�. Then, integrating over the Fermi fields,
one obtains the expression

Z =� D�D
D�e−d�drg��2−
2�

� exp�Tr ln�Ĝ0
−1 + g
 − � · ���ez + g���	 . �3�

At this stage the analysis is exact, but to proceed further one
must employ an approximation. To orient our discussion and
make contact with conventional Stoner theory, let us first
consider a direct saddle-point approximation scheme.

B. Stoner mean-field theory

As well as the “effective” magnetization imposed by
population imbalance, we anticipate the development of a
spontaneous magnetization which will drive the axis of
quantization away from the z axis. We reorient the axis of
quantization to lie parallel to the net magnetization, denoted
in mean-field theory �with overbars� �=��+ ̄zez, ��

= �̄x , ̄y�, and with this definition, the total magnetization of
the system is given by M=��ez /g+�. Separately varying
the action with respect to �� and ̄z one obtains, respec-
tively, the saddle-point equations,

���

̄z
� = −

��V�−1Tr�Ĝ+ − Ĝ−�
��g���2 + �ḡz + ���2

� g��

ḡz + ��
� ,

where Ĝ�
−1= Ĝ0

−1+g
̄� ���ez+g��, and V denotes the total
volume of the system. Together, these equations admit two
possible solutions:

�i� ���=0� and M̄ = ̄z. The total magnetization of the
system can be ascribed to population imbalance with no

spontaneous magnetization in-plane. Within this solution, M̄
is a function of �ḡz+��� so it can be used to infer the
chemical-potential shift, ��.

�ii� ����0�. The total magnetization takes the form M̄
= ���

2 + ̄z
2�1/2. Along z axis, the magnetization is fixed due to

population imbalance, with the additional magnetization de-
veloping within the x-y plane. In this case, the saddle-point
solution translates to the condition ��=0, i.e., no chemical-
potential shift is required to recover the fixed z component of
the magnetization due to the population imbalance; it is sim-
ply given by the resolved component of the total magnetiza-
tion.

The total population N=N↑+N↓ can in turn be obtained

from the variation 	S̄ /	
̄=0

Expanding the action in interaction strength, g, S̄

=gz
2 Tr�1+gĜ0Ĝ0�=gz

2�1−g��, and one can extract the
familiar Stoner criterion �41,42� for a population balanced
system, with � being the density of states. For g��1 the

state is unmagnetized, M̄ =0, and chemical potentials of the
two Fermi surfaces remain equal. If g��1 then the state is

magnetized with M̄ =��g�−1� /g3��. We also note that the
Stoner criterion can be reformulated to account for popula-

tion imbalance giving S̄=g2�1−g��−g2��2, leading to a
transition at the same value of interaction strength as for the
balanced system. Although, at this order, the saddle-point
approximation predicts a continuous transition to a ferromag-
netic phase for the balanced system, it is well-established
that fluctuations of the magnetization field drive the transi-
tion first order at low temperature �43�. This effect can be
captured by retaining fluctuation contributions to second or-
der in the interaction. In the following, we will explore the
impact of fluctuations on the equations of motion associated
with the uniform mean field.
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C. Integrating out auxiliary field fluctuations

To implement this program, it is convenient to parameter-
ize the Hubbard-Stratonovich fields into some, as yet unde-
termined, stationary �spatially uniform� values �0 and 
0,
and fluctuations around them, �fl and 
fl. Integrating out
these fluctuations, the goal is to obtain the renormalized
mean-field equations for �0 and 
0 retaining contributions to
second order in g. Substituting �=�0+�fl and 
=
0+
fl
into Eq. �3�, and rotating the z axis from the quantization
direction to lie along the direction of uniform magnetization
using the constant matrix T, one obtains

Z = e−�Vg��0
2−
0

2�� D
flD�fl exp�−� d�drg��fl
2 − 
fl

2�

� exp�Tr ln G−1 + Tr ln�I + gGT−1�I
fl + � · �fl�T�	 ,

where now Ĝ�
−1= Ĝ0

−1+g
0� ���ez+g�0� denotes the ele-
ments of the inverse Green’s function of the system at the

level of the renormalized mean field, Ĝ=diag�Ĝ+ , Ĝ−�. Then,
expanding the action to second order in fluctuations, 
fl�r ,��
and �fl�r ,��, and performing the functional integral, one ob-
tains the thermodynamic grand potential from the quantum
partition function using �G=−�−1 ln Z,

�G = Tr ln Ĝ+
−1 + Tr ln Ĝ−

−1

†

+ g��0
2 − �0

2�

+
1

2
Tr ln�1 − g2�++�−−�

�

+
1

2
Tr ln�1 + g�+− + g�−+ + g2�+−�−+�

�

,
�4�

a result that is independent of the transformation T. Here we
have defined the spin-dependent polarization operator,

�ss���,q� =
2

�V
�
��,k

Gs���,k�Gs���� − �,k − q� ,

where the sum on �� runs over fermionic Matsubara fre-
quencies. The term labeled �†� simply represents the thermo-
dynamic potential of a noninteracting Fermi gas with shifted
chemical potentials. The term labeled ��� is due to trans-
verse fluctuations of the magnetization field and coincides
with that obtained in Ref. �44�. By contrast, the term labeled
���, corresponding to longitudinal fluctuations, differs from
that obtained in Ref. �44� by the additional contributions
from density-fluctuation effects.

To proceed, we now expand the potential �G to second
order in g and perform the summations over Matsubara fre-
quencies. Rearranging the momenta summations, one obtains

�G = −
1

�V
�
k

s=�+,−�

ln�1 + e−���k−�s�� + g��0
2 − �0

2� + gN+N−

+
2g2

V
�

k1,2,3

n+��k1
�n−��k2

�
�

�1 − n+��k3
���1 − n−��k4

��

�k1
+ �k2

− �k3
− �k4

,

�5�

where �s=�−g
0+s���ez+g�0�, ns���= �1+exp�−���
−�s��	−1, and Ns=�kns��k�. Conservation of momentum re-
quires that k1+k2=k3+k4. Physically, the numerator of the
second-order term indicates that the matrix element associ-
ated with the transition �k1 ,k2�→ �k3 ,k4� is proportional to
the probability that states k1 and k2 are occupied, while
states k3 and k4 are unoccupied. Following �45� �and the
earlier discussion of �43��, to renormalize the unphysical di-
vergence of the term in n2���, labeled ��� close to reso-
nance, we regularize the effective interaction at second order
in scattering length a,

g�k1,k2� �
2kFa

��
−

8kF
2a2

�2�2V2 �
k3,4

1

�k1
+ �k2

− �k3
− �k4

,

where �=�� /�2�2 and kF=�2m�. In a population imbal-
anced system the definition for the chemical potential is that
which gives the same total number of particles in the popu-
lation balanced system, that is kF=�33�2�n↑+n↓�, where n↑
and n↓ are the number of up- and down-spin particles; this
definition holds true in both the canonical and grand canoni-
cal ensembles. This regularization of the contact interaction
exactly cancels the divergent terms in n2���, labeled ���.
Furthermore, the terms in n4��� are zero by symmetry. Fi-
nally, making use of the symmetry in k3 and k4, one obtains

�G = −
1

�V
�
k

s=�+,−	

ln�1 + e−���k−�s��

+
2kFa

��
��0

2 − 
0
2� +

2kFa

��
N+N− −

8kF
2a2

�2�2V3

� �
k1,2,3

n+��k1
�n−��k2

��n+��k3
� + n−��k3

��

�k1
+ �k2

− �k3
− �k4

. �6�

From the thermodynamic potential we can compute the free
energy per unit volume F=�G+��=�↑,↓	��+����N�. To
consolidate terms entering the free energy we switch from
the population imbalance pseudospin basis to the magnetiza-
tion basis, retain contributions to order O(�kFa�2) , recall that
if ��=0 then M �0, whereas if ���0 then M =0, and
affect the rearrangement
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2kFa

��
��0

2 − �0
2� + �

�=�↑,↓�
�� + ����N�

= �� −
2kFa

��
�0 + ���ez +

2kFa

��
�0��

�+

N+ + �� −
2kFa

��
�0 − ���ez +

2kFa

��
�0��

�−

N−

+
2kFa

��
��0

2 − �0
2� + �2kFa

��
�0 + �� − ���ez +

2kFa

��
�0��N+

+ 	�2kFa

��
�0 − �� + ���ez +

2kFa

��
�0��N−

� .

Then, if we set �0=�+�� and 
0= 
̄+�
, an expansion in
�� and �
 shows that the terms labeled ��� sum to zero to
the accuracy of the free energy, O(�kFa�2). Retaining the re-
maining contribution, the free energy reduces to the form

F = −
1

�V
�
k

s=�+,−�

ln�1 + e−���k−�s�� + �
s=�+,−�

�sNs

‡

+
2kFa

��
N+N−

−
8kF

2a2

�2�2V3 �
k1,2,3

n+��k1
�n−��k2

��n+��k3
� + n−��k3

��

�k1
+ �k2

− �k3
− �k4

.

This expression coincides �46� with that obtained in Ref.
�31�. The method employed in the numerical calculation of
the summation over three momenta is described in the Ap-
pendix.

D. Magnetization

To minimize the free energy and obtain the net magneti-
zation it is convenient to take the expression for thermody-
namic potential �6� and affect the shift of the field �z��z
−���� /2kFa. As a result, the thermodynamic potential takes
the form

�G = −
1

�V
�
k

s=�+,−	

ln�1 + e−���k−�s�� +
2kFa

��
��0 −

��ez��

2kFa
�2

−
2kFa

��

0

2 +
2kFa

��
N+N−

−
8kF

2a2

�2�2V3 �
k1,2,3

n+��k1
�n−��k2

��n+��k3
� + n−��k3

��

�k1
+ �k2

− �k3
− �k4

, �7�

where, in response to the shift of �z, the factors of �s=�
−2kFa
0 /��+2kFas��0� /�� entering the definitions of N�

and n� are now independent of ��. The thermodynamic
potential can be rewritten in terms of a function of just the
auxiliary fields and the chemical-potential shift as �G

=F���0��+2kFa��0−��ez�� /2kFa�2 /��−2kFa
0
2 /��.

In the grand canonical ensemble, the thermodynamic po-
tential must be minimized with respect to the components of
the auxiliary field, giving

F����0��
��0�

���

z
� +

4kFa

��
� ��

z − ����/2kFa
� = 0 , �8�

where ��= �x ,y� so �0=��+zez. Following Sec. II B
one may now identify the magnetization with the field �0
−����ez /2kFa. If ��=0, then the system of equations is
solved by either F����0�� / ��0�+4kFa /��=0 �the direction of
spontaneous ferromagnetism in-plane remains undetermined�
or �0=0. If ���0 then ��=0, and the magnetization is set
by the equation F��z�=2���−2kFaz /��� and is oriented
along the z axis. This behavior is analogous to what we saw
in the mean-field analysis in Sec. II B. Finally, as a consis-
tency check, one may note that the expected degree of popu-
lation imbalance can be recovered from the grand potential
M =−��G /��� �T,V,N.

III. POPULATION IMBALANCE

With the formal part of the analysis complete, we will
now apply these results to explore the implications of ferro-
magnetism in the atomic Fermi gas. To begin, let us consider
the phase behavior of the system in the canonical ensemble
working at fixed particle number. The variation in the total
magnetization, �M�, as a function of interaction strength and
particle imbalance can be found by minimizing the free en-
ergy at fixed particle number. The results are shown in Fig. 1.
To ensure that the free energy is locally minimized rather
than just being at a stationary value �47�, the curvature was
examined numerically. In the balanced Fermi gas, P=0, the
results shown in Fig. 1�a� recapitulate those discussed by
�31�. In particular at zero temperature, when the interaction
strength is small, kFa�1.05, there is no net magnetization.
As the interaction strength is increased, at kFa�1.05 there is
a first-order phase transition into a magnetized phase with
M /N�0.6. As kFa is increased further the magnetization
rises until it is saturated at kFa�1.11.

With increasing population imbalance, P, at kFa�1.05,
where it is not energetically favorable for a spontaneous
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magnetization to develop, the magnetization is forced to stay
pinned to the minimum value set by the imbalance. With
increasing interaction strength, at kFa�1.05 there is a first-
order transition and the magnetization jumps to M /N�0.6.
This feature is consistent with the findings of the Stoner
mean-field theory that the transition interaction strength
found is independent of population imbalance. If the popu-
lation imbalance is greater than P /N�0.6 then the magneti-
zation takes the value of the spontaneous magnetization pro-
jected onto the sheet of minimum magnetization caused by
the population imbalance.

From these results, one can infer the corresponding zero-
temperature phase diagram Fig. 1�b�. Characterizing the
phase behavior by the strength of the in-plane magnetization
and the degree of polarization, the phase diagram divides
into three distinct regions. At low interaction strength the
system is not spontaneously unmagnetized, though there can
be a magnetization fixed by the population imbalance. Then,
at increased interaction strength the system become partially
magnetized either through a first-order �at low population
imbalance� or a second-order phase transition. At interaction
strength above kFa�1.11 the magnetization saturates.

To address the properties of the population imbalanced
system in the grand canonical regime, we will divide our
discussion between the uniform and trap geometries. In Sec.
III A we will address the properties of a uniform system
where the chemical potential � and shift �� are held con-
stant �allowing the species populations to effectively inter-
change�. Drawing on these results, we will then discuss the

phase behavior in a harmonic trap in Sec. III B.

A. Uniform system

In the spatially uniform system, when the chemical poten-
tials of the two species are fixed, for each value of the inter-
action strength kFa and relative shift in chemical potential
�� /�, from the free energy one can obtain the phase corre-
sponding to minimal thermodynamic potential. Applying this
procedure, the resulting phase behavior is shown in Fig. 2.
For �� /�=0 and small interaction strength kFa�1.05 there
is no magnetization. As the interaction strength is increased,
at kFa�1.05 in the canonical regime Fig. 1 there is a first-
order phase transition into a fully magnetized state. Working
at fixed chemical potential �Fig. 2�a��, the phase transition
straight into a saturated state increases the number of par-
ticles, which in turn increases the effective interaction
strength to kFa�1.25 �calculated using the chemical poten-
tial for a noninteracting system with the same total number
of particles�. This leads to an intermediate region of phase
separation in the grand canonical regime. At kFa�1.05 as
the chemical-potential shift is increased up to �� /�=1, the
magnetization increases up to its maximum saturated value
as the Fermi surfaces become more unbalanced. At �� /�
�1 the chemical potential of the minority-spin species is
negative so only the majority-spin species remain and the
system is fully magnetized. With a chemical-potential shift
the region of phase separation corresponds to the first-order
phase transition in Fig. 1. The corresponding phase diagram

1 1.05 1.1 1.15
0

0.5
10

0.5

1

M/N

(a)

1 1.05 1.1 1.15
0

0.5
10

0.5

1

M/N

0

0.5

1

1 1.05 1.1 1.15

P
/N

kFa

(b)

UnM
M⊥ = 0

PM
M⊥ �= 0

FM
M⊥ �= 0

kFaP/N

M/N

kFaP/N

M/N

FIG. 1. �Color online� �a� shows the magnetization M as a func-
tion of population imbalance P and interaction strength kFa
=�33�2�n↑+n↓� in the canonical ensemble at T=0 at fixed species
populations. The thick line traces system variation at P=0, which
corresponds to trap profile �P /N=0� in Fig. 3. �b� shows the phase
boundary between “unmagnetized” �UnM� and partially magnetized
�PM� region and the line of saturation before the fully magnetized
�FM� region. Note that, by unmagnetized, we refer to the not in-
plane magnetization. The solid line denotes first-order transitions,
the dashed second order and saturation.

FIG. 2. �Color online� �a� shows the variation of magnetization
M as a function of chemical-potential shift �� and interaction
strength kFa in the grand canonical ensemble at T=0. The thick
lines correspond to trap profiles at P /N=0, P /N=0.4, and P /N
=0.8 in Fig. 3. In the region where magnetization is undefined there
is phase separation. The lower set of diagrams show the phase
boundaries �and saturation line� between “unmagnetized” �UnM�,
partially magnetized �PM�, and fully magnetized �FM� regions, as
well as the region of phase separation.
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showing the regime of two-phase coexistence is shown in
Fig. 2�b�.

Finally, if the system has an imposed density and popula-
tion imbalance, and the chemical potentials are free to vary,
then there are two possibilities: First, the spontaneous ferro-
magnetism is sufficient to provide the population imbalance
and any excess magnetization lies in the plane. This corre-
sponds to a point on the line ��=0 in Fig. 2. The second
possibility is that spontaneous ferromagnetism is not suffi-
cient, and so there is an additional chemical-potential shift
���0. In this case the magnetization then points along the
direction of population imbalance. This is consistent with the
findings in Sec. II D. For a given interaction strength, the
magnetization increases with chemical-potential shift to satu-
ration, so there is always a chemical-potential shift that will
give a suitable population imbalance.

B. Trapped system

Using the insight gained from the study of the uniform
system, we can now explore an atomic Fermi gas in the
physical system—a potential trap. Without loss of generality
we take ↑ �↓� to represent the majority �minority� species of
atoms. We focus on a harmonic trap, with rescaled spatial
coordinates to ensure a spherically symmetric trapping po-
tential, V�r��r2. Furthermore, we make use of the local-
density approximation in which the chemical potential of
both species �eff,��r�=�0,�−V�r� are renormalized by the
same trapping potential. Although there is some experimen-
tal evidence �48,49� that the local-density approximation
might not be valid �50,51� in some setups, we believe that its
application here will correctly address the qualitative phase
structure. The chemical potentials are regarded to be locally
fixed; therefore, the local phase is that of the uniform system
in the grand canonical regime examined in Sec. III A. With a
constant chemical-potential shift �� and interaction strength
g, but varying effective chemical potential �, the system
follows the trajectory kFa��� and �� /��1 /� in the grand
canonical regime shown in Fig. 2. If the chemical potential is
large, the system spontaneously becomes ferromagnetic, and
the magnetization is saturated; if the chemical potential is
small, the relative chemical-potential shift is large ensuring
the magnetization is again near saturation. The locus in Fig.
2 shows that, in the intermediate region, the magnetization
can develop a minimum depending on the degree of popula-
tion imbalance.

To understand the behavior in the trap geometry, one
should note the following: If the degree of equilibrium pseu-
dospin magnetization is in excess of that imposed by total
population imbalance alone, the analysis of Sec. II D tells us
that some component of the spontaneous magnetization lies
along the z axis with the remainder oriented in the x-y plane.
If, however, the net population imbalance is large, then ��
�0 and no in-plane magnetization develops. Here one may
identify three characteristic behaviors with radial density
profiles shown in Fig. 3. The first �P /N=0� has in-plane
magnetization, and the others do not. The second �P /N
=0.4� has a first-order transition and nonzero phase separa-
tion, whereas the third �P /N=0.8� is always fully magne-

tized due to strong interactions. The three plots all have the
same central chemical potential.

The first possibility shown in Fig. 3 �P /N=0� is at small
population imbalance, involving the development of a spon-
taneous magnetization, which is in excess of what can be
absorbed by population imbalance alone, in this case ��
=0 and some magnetization lies in the plane. At small radii,
where the interaction strength kFa�1.25 is greater than the
limit for ferromagnetism, the results of the uniform system
�Sec. III A� show that there is saturated ferromagnetism in
the plane and a normal component that provides the fixed
population imbalance. Following this there is a region of
phase separation, and then at kFa�1.05 there are equal par-
ticle densities and no magnetization. The outer edge of the
particle distribution of both species is where �0=V�r0�.

In the second scenario shown in Fig. 3 �P /N=0.4� the
spontaneous magnetization is not sufficient to provide popu-
lation imbalance alone, in this case we require ���0, and
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all magnetization is oriented along the axis of population
imbalance. From the trap center the population imbalance is
first fully saturated, followed by a region of phase separation,
into a region of partial magnetization. This causes the
minority-spin particles to have a sharp maximum number
density at r /r0�0.6, and the magnetization to have a corre-
sponding minimum; this counters the intuitive expectation
that number density should rise toward the trap center due to
the increasing effective chemical potential. As the effective
chemical potential continues to fall with increasing radius,
the minority-spin species population falls more rapidly than
the majority and magnetization increases. At a large radius,
the chemical potential of the minority-spin particles reaches
zero before the majority spin, so there is a thin shell contain-
ing only majority-spin particles at the outside and so is fully
magnetized.

The third possibility shown in Fig. 3 �P /N=0.8� is that
the locus in Fig. 2 does not cross the first-order transition and
region of phase separation. At �� /��1 the system is fully
magnetized due to the strong interactions between particles.
At �� /��1 the system is fully magnetized due to there
being no minority-spin particles. In the intermediate regime
there is a narrow band where the system is partially polar-
ized. The majority-spin species exists out to greater radius
than in cases �P /N=0� and �P /N=0.4� because �� is larger
so a greater potential at a larger radius is required to give the
majority-spin species zero effective chemical potential.

IV. DISCUSSION

To conclude, let us now consider four methods of how
spin magnetization could be detected experimentally. First,
the interaction energy can be estimated by studying the ex-
pansion of the gas �52�. Time-of-flight measurements of the
expanding cloud with no external magnetic field B=0 are
ballistic and so can provide the initial kinetic energy. If the
magnetic field is present, B�0, then interactions are signifi-
cant during the expansion. Collisions ensure that all of the
interaction energy is converted into kinetic energy so the
measurements reflect the total released energy. Taking the
difference between the B�0 and B=0 measurements there-
fore probes the interaction energy. An unmagnetized gas has
interaction energy whereas the fully magnetized gas has zero
interaction energy, so time-of-flight measurements should al-
low the ferromagnetic state to be detected.

Radio frequency spectroscopy �53� allows one to probe
the spatial variations of scattering lengths by exciting the
atoms from one spin state �1� into some other state �3� while
leaving the atoms in the second spin state �2� unaffected. The
presence of atoms in state �2� shifts the resonance �13 by
��13=2n2�a23−a21�, where aij is the scattering length be-
tween states �i� and �j�. Measurement of the resonance shift
could allow the spatial distribution of the individual species
to be probed. The presence of the ferromagnetic state could
be inferred by looking for the characteristic density profiles
outlined in Sec. III A.

A third simple method of detecting a ferromagnetic tran-
sition could be to monitor the size of the atomic cloud. In a
harmonic trap the cloud size is proportional to the square

root of the Fermi energy. Therefore, the size of the fully
magnetized state is 21/3 larger than the unmagnetized.

On the repulsive side of the Feshbach resonance three-
body collisions can result in the formation of a molecular
bound state of two atoms that might destroy the atomic gas
before it has time to undergo ferromagnetic ordering. To
overcome this obstacle an atomic gas spin could be polarized
along the magnetic field direction and an rf � /2 pulse ap-
plied to rotate all the spins into the plane �53�. The rate of
precession of the spins is set by the magnetic field strength,
which varies across the atomic gas due to field inhomogene-
ities. The precession rate of the atoms would however be
kept locked together by the ferromagnetic interaction. Fur-
thermore the ferromagnetic phase has an antisymmetric wave
function which inhibits collisions and so prevents the forma-
tion of molecular bound states. A signature of ferromag-
netism is, therefore, the absence of molecular bound-state
formation.

We now outline two possible ways to further our analysis.
The first-order phase transition leads to discontinuities in the
density and magnetization leading to phase separation. Such
behavior could lead to a breakdown of the local-density ap-
proximation, a potential source of inaccuracy in our analysis.
This could be fixed through inclusion of a surface energy.

The second is to investigate the possibility that magnetic
texture could develop. Textured modes may have been seen
via the possible formation of a charge density wave or spin
density wave in experimental results on the analogous solid-
state systems of itinerant electron ferromagnets UGe2
�32,33�, Ca3Ru2O7 �54�, and MnSi �19�. Our general formal-
ism should be able to be extended to include the possibility
of a textured phase which lies beyond the first-order line in
the putative paramagnetic regime.

In conclusion we have developed a general formalism to
describe itinerant ferromagnetic transitions in two-
component fermionic cold atom systems with repulsive in-
teractions and potential population imbalance. At low popu-
lation imbalance, we predict that the first-order transition that
characterizes the balanced system persists. However, when
the imbalance is large the transition becomes continuous. In
the trap geometry we found the first-order phase transition
led to discontinuities in density and magnetization. Up to a
critical total population imbalance, set by the possible total
magnetization following a first-order transition, the phases in
the trap had the same density and magnetization profiles with
increasing population imbalance, but in-plane magnetization
fell. With population imbalance above this level, the system
requires a chemical-potential shift to generate a population
imbalance; however there is still a small range over which a
first-order phase transition is seen. In the two latter cases the
local population imbalance displayed a characteristic mini-
mum with radius.
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APPENDIX: COMPUTATIONAL ANALYSIS OF
MOMENTUM SPACE INTEGRAL

An important integral Eq. �6� encountered in this paper
has the form

� � � � F��k1�, �k2�, �k3�, �k4��

�	�k1 + k2 − k3 − k4�dk1dk2dk3dk4. �A1�

To evaluate this integral one could substitute k4=k1+k2
−k3, and then integrate over three parameters representing
the lengths of vectors k1, k2, and k3, and a minimum of three
relative angles between these vectors, giving a total of six
integration parameters. However, numerical integration gen-
erally becomes more prohibitive with increasing number of
dimensions. Since the function F depends only on the mag-
nitude of the momentum, the scheme outlined below allows
us to perform the angular integration separately of the func-
tion and leave a numerical integral over just the four dimen-
sions of the vector lengths.

The integral is re-parameterized according to Fig. 4, q12
=k1+k2 and q34=k3+k4, the vector perpendicular from q12
to k1 and k2 is k12

� , and k34
� is similarly defined. The vector

k12
� has length given by

k12
� =

1

2q
�2q2�k1

2 + k2
2� − q4 − �k1

2 − k2
2�2. �A2�

We first concentrate on calculating the angular component
just of the integral over k1 and k2, the angle between these
vectors is �12. The phase-space volume of the angular inte-
gral is

sin �12d�12 =
k12

�

k1k2
�2 +�k1

2 − k12
�2

k2
2 − k12

�2 +�k2
2 − k12

�2

k1
2 − k12

�2�dk12
�

= −
q12

k1k2
dq12, �A3�

where �k1−k2��q12�k1+k2. The total number density inte-
grated over two momenta can then be found using

�
0

�

4�k1
22�k2

2 sin �12d�12

= �
�k1−k2�

k1+k2

4�k12�k2q12dq12 = 4�k1
24�k2

2, �A4�

which is the expected result. A similar procedure is used to
parameterize the separate integral over the angular compo-
nents of k3 and k4 into q34.

The original integral Eq. �A1� is now rewritten in terms of
the parameters q12 and q34 using Eq. �A4�. Momentum con-

servation is required by the presence of the Dirac delta func-
tion 	�k1+k2−k3−k4�=	�q12−q34�; however the q12 and q34
parameters introduced are just scalar quantities. The momen-
tum conservation requirement is implemented by demanding
that the two scalar integration parameters are equal, which
sets the two integration parameters equal, q12=q34=q, so
there is just one integral over parameter q remaining. How-
ever, this introduces an extra angular degree of freedom �the
angle between q12 and q34�. In order to compensate the inte-
grand is divided by the extra phase-space volume of the an-
gular integration, 4�q2. We then obtain

16�3� � � � F�k1,k2,k3,k4�k1k2k3k4

� max�0,min�k1 + k2,k3 + k4�

− max��k1 − k2�, �k3 − k4���dk1dk2dk3dk4. �A5�

This integral is better suited to computational evaluation
since it is four dimensional �rather than six-dimensional Eq.
�A1��, and the term introduced to compensate for the angular
integral has a relatively simple form.

�k1

�k2
�k4

�k3

�q12

�q34

�k⊥
12

�k⊥
34

θ12

FIG. 4. The re-parameterization of momenta used to ensure mo-
mentum conservation. k1,2,3,4 represent the momenta appearing in
the original integral, whose separate sums are q12=k1+k2 and q34

=k3+k4, which the Dirac delta function in Eq. �A1� will ensure that
q12=q34. �12 represents the angle between k1 and k2, k12

� is the
vector perpendicular from q12 to k1 and k2, and k34

� is similarly
defined.
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