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Temporal fluctuation-induced order in conventional superconductors
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Communal pairing in superconductors introduces variational freedom for Cooper pairs to share fermions.
Temporal oscillations of the superconducting gap entropically drive communal pairing through the order by
disorder phenomenology, stabilizing a finite momentum space width of the superconducting gap that increases
with interaction strength, creating a smooth evolution from the weakly interacting BCS state to the strongly
interacting Bose-Einstein condensate state.
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I. INTRODUCTION

The microscopic description of superconductivity by
Bardeen, Cooper, and Schrieffer (BCS) [1] is one of the
historic milestones of condensed matter physics, accurately
describing a host of materials [2–5] and serving as the foun-
dation for numerous theoretical extensions and numerical
studies, such as Eliashberg theory [6], Fulde-Ferrell-Larkin-
Ovchinnikov (FFLO) theory [7,8], breached superconductiv-
ity [9–11], the T -matrix formulation of the Bose-Einstein
condensate (BEC)-BCS crossover [12], quantum Monte Carlo
studies of the weakly interacting [13] and unitarity [14] limits,
studies on the effects of mass imbalances [15,16], three-body
effects [17], and the more recent communal pairing theory
[18,19]. Central to the usual formulation of BCS theory is
the assumption that the Cooper pairs condense only in the
zero net momentum state, an assumption that is challenged
by communal pairing theory [18–20].

Communal pairing theory as originally derived [18]
showed that it is energetically favorable for Cooper pairs
to share fermions. By considering the quantities Nσ with
σ ∈ {↑,↓}, where N↑ is the number of up-spin fermions
any particular down-spin fermion is paired with, and vice
versa, communal pairing theory predicts an optimal ratio of
communal state indices of N↑/N↓ = 1 for the spin-balanced
BCS system and N↑/N↓ �= 1 in a spin-imbalanced system
[19,20]. The central paradigm shift that a finite gap may be
present at nonoptimal pairing momenta allows N↑ and N↓ to
be greater than 1. It is therefore natural to ask: as interactions
get stronger in a spin-balanced BCS system, will multiple
Cooper pairs share fermions, N↑ > 1 and N↓ > 1, to increase
correlations? The variational principle ensures that the inclu-
sion of additional freedom to form correlations will certainly
not increase the ground state energy so can only lower it.

This paper explores the extent of communality on spin-
balanced systems. We do this by extending BCS theory,
complementary to other additional effects, such as retardation
as in Eliashberg theory [6] or induced Gor’kov-Melik-
Barkhudarov interactions (GMB) [21,22]. We focus our
discussion on two-dimensional (2D) systems as communality

is predicted to be enhanced in low dimensions [18–20] and
because the results may be derived analytically here, but will
also derive equivalent 3D results where possible. We will also
be preemptively setting N↑ = N↓ = Nq to reflect the fact that
the system is spin balanced.

In the next section we briefly recap conventional supercon-
ductivity from a field theoretic perspective and note the main
difficulty with an exact treatment. Section III analyzes sin-
gle superconducting channels, making a distinction between
static and oscillating channels before we combine these results
into a minimally coupled model of multiple active supercon-
ducting channels in Sec. IV, making clear the connection
to the BEC-BCS crossover. Conclusions are summarized in
Sec. V.

II. QUANTUM ACTION

To start our analysis from a secure theoretical footing,
we analyze the quantum partition function of a fermion
gas with attractive contact interactions of strength g, Z =∫
Dψ̄Dψ exp(−S[ψ̄, ψ]), where

S[ψ̄, ψ]

=
∫

dτdx

[ ∑
σ

ψ̄σ

(
∂τ − ∇2

2m
− μ

)
ψσ − gψ̄↑ψ̄↓ψ↓ψ↑

]

is the quantum action, ψ is a Grassman field with ψ̄ being its
conjugate, τ is the imaginary time that goes from 0 to β the
inverse temperature, and σ ∈ {↑,↓} denotes the spin species.
The fermions are of equal mass m and we work in Hartree
units, so h̄ = kB = 1. A Hubbard-Stratonovich decoupling in
the Cooper channel yields the modified action

S[ψ̄, ψ,�∗,�] =
∫

dτdx

[ ∑
σ

ψ̄σ

(
∂τ − ∇2

2m
− μ

)
ψσ

− �ψ̄↑ψ̄↓ − �∗ψ↓ψ↑ + �∗�
g

]
,

where the gap parameter is defined as � ≡ g〈ψ↓ψ↑〉 and is a
function of both space x and time τ . The Fourier transform
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of the gap is therefore generically a function of the pair
momentum q and the frequency �, which label the various
superconducting channels. In the weakly interacting limit, the
gap is known to be isotropic and static and therefore the
Fourier transform is a δ function in the momentum-frequency
domain. However, in the strongly interacting limit, approach-
ing the BEC-BCS crossover, communal pairing allows Cooper
pairs to share fermions [18]. We note there is an analogy to
Cooper pairs becoming confined in real space, which should
correspond to a widening of the gap in momentum space. It
is this width that is the central concern of this paper, and so
we Fourier transform to momentum and frequency space to
obtain the action

S[ψ̄, ψ,�∗,�]

= β
∑

k,ω,σ

ψ̄k,ω,σ (−iω + ξk )ψk,ω,σ

− β
∑

k,q,ω,�

(
�q,�ψ̄k+ q

2 ,ω+ �
2 ,↑ψ̄−k+ q

2 ,−ω+ �
2 ,↓ + H.c.

)

+ β
∑
q,�

|�q,�|2
g

,

where k and q label momenta and pair momenta, re-
spectively; ω is a fermionic Matsubara frequency; � is
a bosonic Matsubara frequency; ξk ≡ |k|2/2m − μ is the
free particle dispersion less the chemical potential; �q,� =
g〈∑k,ω ψk+ q

2 ,ω+ �
2 ,↓ψ−k+ q

2 ,−ω+ �
2 ,↑〉 are the Fourier compo-

nents of the gap function; and H.c. denotes the Hermitian
conjugate.

We ultimately consider communal pairing through multiple
channels but to lay the foundation of the analysis, and connect
to standard BCS theory, we first decouple through a single
�q,� channel.

III. DECOUPLING IN A SINGLE CHANNEL

We first follow the standard BCS prescription to per-
mit each fermion to be paired with only one opposite spin
fermion. Therefore, only one superconducting channel �q,�

is nonzero, revealing a key difference between the channels
where � = 0 and � �= 0, namely, that while the action of the
static channels is fully real, the oscillating channels have a
complex action indicating a finite lifetime of the Cooper pairs.
These different situations are dealt with in Secs. III A and
III B, respectively. In Sec. IV, these decoupled expressions for
the action are combined to provide a full action where each
fermion may be paired with every other.

With � = 0, except at a specific q and �, the momentum
sum in the three-point interaction terms is simplified. The
action is then

Sq[ψ̄, ψ,�∗,�] = β
|�q,�|2

g
+ β

∑
k,ω

ψ̄
T
k, q
ω, �

×
(

G−1
k+ q

2 ,ω+ �
2 ,↑ −�q,�

−�∗
q,� G−1

−k+ q
2 ,−ω+ �

2 ,↓

)
ψ k, q

ω,�

,

where ψ̄
T
k, q
ω, �

≡ (ψ̄k+ q
2 ,ω+ �

2 ,↑ ψ−k+ q
2 ,−ω+ �

2 ,↓) and the in-

verse propagator G−1
p,ν,σ ≡ σ (−iν + ξp). The fermion fields

can then be integrated out to obtain the effective action

Sq,�[�∗,�] = β
|�q,�|2

g
−

∑
k,ω

ln
(
1 − |�q,�|2

× Gk+ q
2 ,ω+ �

2 ,↑G−k+ q
2 ,−ω+ �

2 ,↓
)
. (1)

Far below the critical temperature, and for q2/2m + �2/4μ <

|�q,�|2/μ, we may perform the Matsubara summation to
obtain

Sq,�[�∗,�] = β
|�q,�|2

g
− β

∑
k

(Ek,q,� − εk,q,�)

+
∑

k

cosh
βkq cos θ

2m
e−βEk,q,� , (2)

where Ek,q,� ≡
√

|�q,�|2 + ε2
k,q,�

, εk,q,� ≡ k2

2m + q2

8m − μ −
i �

2 , and θ is the angle between k and q. The limit on the
magnitude of q is heuristically where the kinetic energy of the
Cooper pair center of mass overcomes the superconducting
condensation energy and therefore breaks the pair. Likewise,
the limit on � sets a maximum allowed frequency of tempo-
ral oscillations of the gap. This therefore limits the stability
of a finite �q,� solution. The final term shows that the ac-
tion has a leading-order temperature dependence of the form
f (β, q,�)e−β|�|, where f is some bounded function. The
term tends to zero as T → 0.

The first and second terms that remain at zero temperature
require the contact interaction strength g be regularized to
eliminate the ultraviolet divergence. We replace g with the
s-wave scattering length as via the formal substitution [23–25]

1

g
=

{
mL2

[
1

2π
ln(κa) + 1

L2

∑
k

1
k2−κ2

]
, D = 2,

mL3
(− 1

4πas
+ 1

L3

∑
k

1
k2

)
, D = 3,

(3)

where L is the system length, a = eγ

2 as is the scattering length
scaled for convenience with γ the Euler-Mascheroni constant,
and κ is an unimportant momentum scale that will vanish
once the regularization procedure is carried out in full. The
scattering length a (or as) may be directly controlled experi-
mentally [26–28]. This formal substitution works to regularize
the integrals of Eq. (2) at any value of �.

The ultraviolet divergence of Eq. (2) is thus exactly can-
celed, allowing us to take the sum over all k. Additionally, the
first term on the right-hand side of the regularization in Eq. (3)
allows us to predict that the familiar exponential suppression
factor e−2/gνF seen in the solid-state BCS gap will be replaced
with 1/kFa in 2D and eπ/2kFas in 3D.

The action in 2D can be resolved analytically as

Sq,� = − βmL2

4π

[
μq,�

(√|�q,�|2 + μ2
q,� − μq,�

)

− |�q,�|2 ln
ma2

√
e

(√|�q,�|2 + μ2
q,� − μq,�

)]
, (4)
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where μq,� ≡ μ − q2

8m + i �
2 and we have neglected the finite

temperature correction term. In 3D, the action may be evalu-
ated in terms of an elliptic integral,

S(3D)
q,� = −βmL3

π2

[
π

∣∣�(3D)
q,�

∣∣2

4as
+

√
2mμ

(3D) 5
q,� I1

(∣∣�(3D)
q,�

∣∣
μ

(3D)
q,�

)]
,

where I1(z) ≡ ∫ ∞
0 dxx2[

√
z2 + (x2 −1)2 − (x2 − 1) − z2/2x2]

is a dimensionless function.
Now that we have derived an expression for the action we

are well positioned to consider separately two cases, first the
special case of � = 0 before extending this to the finite �

system.

A. Static single channel

The static action can be found by setting � = 0 in Eq. (4)
to obtain

Sq = −βmL2

4π

[
μq

(√|�q|2 + μ2
q − μq

)

− |�q|2 ln
ma2

√
e

(√|�q|2 + μ2
q − μq

)]
,

where we drop the � subscript entirely as it is understood
to be zero. The action is a real number, confirming that the
condensed phase is stable in time. We now obtain the grand
potential through the standard formula � = −T lnZ , the gap
�q, and the chemical potential that promote a platform for our
future analysis and allow us to compare to standard results.

Grand potential. The grand potential �q is obtained di-
rectly from the action

�q = − mL2

4π

[
μq

(√|�q|2 + μ2
q − μq

)

− |�q|2 ln
ma2

√
e

(√|�q|2 + μ2
q − μq

)]
. (5)

As expected, the grand potential tends to that of the normal
state when |�q| = 0. In 3D the form of the grand potential
similarly mirrors the 3D action without a factor of β.

A subtlety that bears mention is that in both 2D and 3D
the expression above requires q2/2m < |�q|2/μ, that is, when
the additional kinetic energy of a Cooper pair is less than the
condensation energy. Above that limit, the additional kinetic
energy is sufficient to break the Cooper pairs and so the grand
potential evaluates to zero identically.

Superconducting gap. The gap is determined by requiring
that the grand potential be stationary with respect to the gap,
∂�
∂�∗

q
= 0, giving the gap

�q =
{

1
ma2

√
1 + 2ma2μq, q < 2

a

0, q � 2
a .

(6)

The gap in 3D meanwhile is the solution of the implicit equa-
tion

− 1

kFas
= 2

π

√
μ

(3D)
q

EF
I2

(∣∣�(3D)
q

∣∣
μ

(3D)
q

)
, (7)

where I2(z) ≡ ∫ ∞
0 dx[x2/

√
z2 + (x2 − 1)2 − 1].

Solving for μ. The chemical potential μ is found from the
equation N = − ∂�

∂μ
. In 2D it is then

μ = EF

(
1 − 1

k2
Fa2

+ q2

4k2
F

)
,

and that depends on the net momentum of the condensed
Cooper pairs, owing to their kinetic energy.

In 3D we recast the BCS number equation [25] to obtain

1 = 3

2

√
μ

(3D)
q

EF

3

I3

(∣∣�(3D)
q

∣∣
μ

(3D)
q

)
, (8)

where I3(z) ≡ ∫ ∞
0 dxx2[1 − (x2 − 1)/

√
z2 + (x2 − 1)]. Since

the pair of coupled Eqs. (7) and (8) only depend implicitly
on q through �(3D)

q and μ(3D)
q , we conclude that μ(3D)

q =
μ

(3D)
BCS and therefore μ(3D) = μ

(3D)
BCS + q2

8m . At q = 0 the forms
of Eqs. (7) and (8) are indeed equivalent to those of the
regularized BCS equations [25].

Weak interactions.We study the weakly interacting limit in
2D by setting kFa � 1. In this limit, μq ≈ EF as expected
and the gap reduces to �q ≈ 2EF/kFa, from which we may
extract the 3D analog �q,(3D) ∼ EFe−π/2kF |as| by inspection
of the regularization procedure in Eq. (3), which agrees with
standard BCS theory [25]. Similarly, we can state that in the

weakly interacting limit the validity requirement q2

2m <
|�q|2

μ

takes the form q < 8kF
e2 e−π/2kF |as|.

B. Oscillating single channel

When � is nonzero, the action Sq,� is complex. Expanding
the 2D expression of Eq. (4) in small � about our static � = 0
solution, we obtain

Sq,� = Sq,0 − i
βmL2

4π

(√|�q,�|2 + μ2
q,0 − μq,0

)
� + O(�2).

As Sq,0 is real, the imaginary part of Sq,� is linear in �. All
terms of order �2 and higher are proportional to at least the
second power of |�q,�|. The imaginary part of the action
corresponds to the spontaneous decay rate of Cooper pairs
condensed in this superconducting channel, �sd

q,� = |ImSq,�|.
In 3D, the action may be likewise expanded in the low-� limit
to obtain an imaginary part of the action linear in �.

In this section we have decoupled in a single channel,
performing a BCS-like analysis of the resulting simplified
action for general pair momentum q and frequency �. Two
broad conclusions follow from this analysis. First, when � =
0, multiple q channels are stable with identical nonzero gap
magnitudes and equal grand potentials. This should be ob-
servable in weakly interacting superconductors and can be
understood as the system admitting a persistent supercur-
rent, provided the pair moves slowly enough that dissipation
through quasiparticle excitation is not energetically feasible.
Second, for � �= 0, the action develops an imaginary term,
limiting the lifetime of oscillating modes. This may be thought
of as an inductance that promotes stability of gap-dependent
macroscopic observables, such as the supercurrent.
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IV. MULTIPLE CHANNELS

The results of the previous section indicate that, in princi-
ple, multiple channels are stable at any particular scattering
length, which naturally begs the question of whether mul-
tiple channels coexist in the ground state. Such communal
superconductivity has previously been analyzed and explored
numerically in spin-imbalanced systems [19,20] and so it is
natural to now look at spin-balanced systems. We introduce
the variational freedom to explore these multiple active chan-
nels with the communal parameter Nq = ∑

q 1, the number of
q channels with nonzero gap. Clearly, Nq is at least equal to 1
(standard BCS superconductor) and is bounded from above by
one of two physical arguments that in 2D take the following
form,

Nq < min

(
1 + 2N

k2
Fa2

,
N

2

)
, (9)

where the first limit (weakly interacting) corresponds to all
superconducting channels for which q < 2/a active and is
exactly equivalent to the physical limit q2/2m < |�q|2/μ
mentioned previously, and with the second limit (strongly
interacting) that there are only N/2 choices of pairing partner
for each fermion. The crossover is at kFa = 2. We note for
completeness that in 3D the first limit has the form Nq =
1 + Nqmax(as)3/2k3

F, where qmax(as) = √
2m/μ(as )|�q(as)|

and the second limit is unchanged.
In addition to this new communal variational freedom,

we also consider the effect on the grand potential of the
short-lived finite � modes, where quantum fluctuations of the
temporally oscillating modes can contribute to driving com-
munal ordering of the superconducting gap. This contribution
will then be added to a minimal model of multiple active
static � = 0 modes. We therefore calculate the total quan-
tum partition function as Z = Z0Z� �=0, where Z0 gives the
multichannel saddle-point approximation and Z� �=0 accounts
for temporal fluctuations of the various modes. The partition
function allows us to find the grand potential and differentiate
to obtain the expected value of the number of fermions shared
between Cooper pairs, Nq, and then explore the evolution of
Nq as we approach the BEC-BCS crossover. We tackle the
static and fluctuating contributions in order.

A. Static channels

We first focus on the static � = 0 channels. The static part
of the partition function has the form

Z0 = exp

[
−β

1

Nq

∑
q

�q(�q, μ)

]
, (10)

which accounts for the long-lived, � = 0 channels where a
|�q,0| �= 0 mean-field solution is possible. The channels are
coupled as they draw from the same reservoir of fermions with
common chemical potential μ. The averaging over modes
may be understood in the context of the quantum action as
considering each fermion as being paired to multiple opposite-
spin fermions probabilistically, and all channels are equally
weighted since the grand potential of each channel in the
single-channel decoupling is identical. The mean-field grand

potential is then

�0 = 1

Nq

∑
q

�q(�q, μ)

= −EFL2(1 + 2ma2μ)2

4πk2
Fa4

+ EF(Nq − 1)2

4Nqk2
Fa2

, (11)

that is, a sum over the grand potentials of single-channel
superconductors. The contribution from oscillating channels
does not depend on the magnitudes of the static channels and
so we may find the superconducting gap in the same way as
for the single channel, by requiring that �0 be extremized.
The result is the same as in Eq. (6) except that μ is constant,
making the gap vary with q in contrast to the single-channel
picture where the gap had the same magnitude for all q < 2/a.
With the form of the gap, we may then evaluate the sum
over q, allowing us to split the energy contributions into the
BCS grand potential (the first term) and the Nq-dependent
communal correction that arises from the changing magnitude
of the gap. For the physically realizable values of Nq, the static
grand potential is minimized at Nq = 1, the standard BCS
result. We therefore turn to address the contributions from
the oscillating channels to determine whether they can drive
communal pairing with Nq > 1.

B. Finite � plasma

Having determined the static channel contribution, we may
now consider the effect of fluctuations in � �= 0 channels.
We consider transitions of a Cooper pair from a stable static
channel to a spontaneously decaying oscillating channel to
obtain the occupation probability of an oscillating channel
as �q(|�q,�|)/(�q(|�q,0|) + �sd

q,�). The modification to the
mean-field partition function accounting for the short-lived
excitations is then

Z� �=0 = 1 +
∑

q,� �=0

�q(|�q,�|)
�q(|�q,0|) + �sd

q,�

+ 1

2!

( ∑
q,� �=0

�q(|�q,�|)
�q(|�q,0|) + �sd

q,�

)2

+ · · ·

= exp

[ ∑
q,� �=0

�q(|�q,�|)
�q(|�q,0|) + �sd

q,�

]
. (12)

The 1 accounts for the situation where no such excitations are
present, the second term for when a single channel is excited,
the third for when two are simultaneously excited, and so on.

The form of the grand potential may be taken from
Eq. (5) and the spontaneous decay rate from Sec. III B.
In order to evaluate the sums, it is necessary to express
the gap magnitudes explicitly in terms of q and �. Once
again, we extremize the grand potential with respect to
the �q,� to obtain |�q,�|2 = |�q|2 − �/ma2, which also
allows us to explicitly compute the upper limit on � as
ma2�M =

√
8(1 + ma2μ) − a2q2(1 + 2ma2μ) − 2, which is

positive for qa < 2, the region we are interested in. From
these relations we see that strong interactions, low a, drive
oscillations of the gap.
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With all this in place, we may now perform the summations
to obtain the contribution to the partition function as

Z� �=0 = exp

{
2L2β

3π2ma4

[
F (1) − F

(
1 − πNqa2

L2

)]}
, (13)

where

F (x) = 1 + x(1 + 2ma2μ)[2
√

1 + x(1 + 2ma2μ) − 3]

1 + 2ma2μ

is a dimensionless function of the dimensionless variable x
characterizing the Nq dependence of this part of the parti-
tion function. The term in the exponential is positive for
1 < Nq < 1 + L2/πa2, that is, for all accessible values of Nq,
corresponding to an increase in the number of accessible mi-
crostates and thus an entropically driven decrease in the grand
potential. The presence of temporally oscillating modes thus
contributes an entropic term to the grand potential, increasing
the number of accessible microstates and thereby reducing
the grand potential. Qualitatively similar behavior may be
obtained in 3D.

C. Optimizing Nq

With the grand potential in place, we are well positioned
to determine Nq. Combining the static and oscillating contri-
butions of Eqs. (11) and (13) gives � as a function of Nq,
which may then be minimized to obtain the optimal number
of stabilized communal pairing channels as

Nq = 1 + 2N

k2
Fa2

− π (32 + π )N

128(1 + 2ma2μ)k2
Fa2

, (14)

that is, slightly fewer than the maximum permitted of Eq. (9).
Provided we remain in the weakly interacting regime kFa >

1 where our analysis is valid, the final correction term of
Eq. (14) introduces a degree of negative feedback that ensures
that Nq/N < 1/2 and we never encounter the hard physical
limit. The BCS limit of Nq = 1 or, in the thermodynamic
limit, Nq/N = 0 is recovered in the weakly interacting limit of
kFa → ∞. We expect the above expression to be most correct
in the regime where the scattering length a is comparable to
or less than the system size L so that Nq > 2, with the BCS
limit being a good description for even weaker interactions.
The key role played by the temporal fluctuations here in deter-
mining the width in momentum space, and thus the real space
structure, of the superconducting gap means that communal
pairing in spin-balanced systems emerges as order by disorder.

The grand potential in 3D exhibits qualitatively similar be-
havior, favoring Nq = 1 if not for the addition of the temporal
fluctuation term, which instead promotes near maximal Nq

provided interactions are weak, that is, kFas → 0−.
The emergence of communal pairing and increase of Nq is

shown in Fig. 1, with Nq increasing smoothly as a function
of the scattering length in both 2D and 3D. This is a marked
difference from BCS theory which presupposes Nq = 1 at all
interaction strengths. For ease of comparison, we have cho-
sen to plot Nq as a function of the dimensionless interaction
strength g∗ = Nv0

EF
, where v0 is the inverse of the first term

in the regularization equation (3), so − 1
g∗ = − 1

2 ln(kFa) in

FIG. 1. Plot of the ratio of Nq to N as N → ∞ as a function
of the dimensionless interaction strength g∗ in 2D (blue line) and
3D (red line). In 2D, − 1

g∗ = − 1
2 ln(kFa), while in 3D, − 1

g∗ = 3π

8kFas
.

Interaction strength increases from left to right. The dotted black line
indicates the theoretical maximum of Nq

N = 1
2 .

2D, while in 3D, − 1
g∗ = 3π

8kFas
. The effect is stronger in 2D

compared to 3D due to fluctuations being stronger in 2D.

D. Adding gap fluctuations

We have shown how temporal fluctuations and concomi-
tant expansion of the phase space entropically stabilize a
communal state. These considerations constitute a nontrivial
extension of the original BCS theory that is nevertheless still
a mean-field approach and is therefore orthogonal to the usual
treatment of Gaussian fluctuations of the order parameter,
with which the T -matrix approach has had much success
[12]. It is therefore instructive to consider both sources of or-
thogonal fluctuation simultaneously by adding the difference
between our obtained communal results and the traditional
BCS mean field to the T -matrix results.

This is shown in Fig. 2 where we have plotted the internal
energy per particle against the interaction parameter ln(kFa).
The BCS mean-field result is constant at 0.5, as seen by
the dashed line, while the effects of Gaussian fluctuation of
the order parameter obtained via the T -matrix approach are
shown by the dotted-dashed line and are seen to consistently
overestimate the energy calculated by quantum Monte Carlo
methods [29–32]. This disparity has previously been pos-
tulated as the GMB effect or beyond-quadratic fluctuations
of the order parameter [12]. Adding our correction to the
T -matrix results gives the solid line, which comes closer
to the Monte Carlo results particularly around ln(kFa) ≈ 2.
Furthermore, the quantum Monte Carlo results are more re-
liable in the intermediate interaction regime than the weakly
interacting regime as the superconducting correlation length
becomes smaller than the simulation cell length, making a
correction in this intermediate regime particularly significant.
We therefore contend that communal effects too may play an
important role in the ground state. The inset of Fig. 2 shows
the same bare and communal corrected T -matrix results over
the same range of ln(kFa) as in Ref. [12], where we see
that at strong interactions our results greatly deviate from
established results. This overshoot at ln(kFa) < 2 is due to the
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FIG. 2. Plot of energy against ln(kFa). The dashed line shows
the BCS mean-field result, the dotted-dashed line shows the result
obtained from treatment of Gaussian gap fluctuations using the T -
matrix method, and the solid line shows the T -matrix results with
our communal correction. Various quantum Monte Carlo results are
shown for comparison. The communal correction is seen to make up
for a significant portion of the discrepancy between the T -matrix and
Monte Carlo results at weak and intermediate interaction strengths.
Inset: Bare (dotted-dashed line) and communal corrected (solid line)
T -matrix solutions over a wider range of ln(kFa).

aforementioned breakdown of assumptions at high interaction
strength, and the system is now more correctly described as a
weakly interacting 2D Bose gas [12].

E. Connection to BEC-BCS crossover

The increase in the extent of communal pairing Nq and
the concomitant width of the gap in momentum space with
increasing interaction strength points to a connection between
communal superconductivity and the BEC state. The com-
munal pairing state comprises many tightly bound, spatially
localized Cooper pairs whose corresponding gap parameter is
spread out in momentum space, analogous to the BEC state
that comprises many tightly bound pairs of fermions. To probe
this connection, we look to the chemical potential. Following
the prescription of Sec. III A, we solve for μ and obtain

μ

EF
= 1 − 1

k2
Fa2

− 8

3πk3
Fa3

+ O

(
1

k5
Fa5

)
.

The first two terms are the BCS solution so the communal
pairing correction is readily isolated as a reduction of the
chemical potential, as seen in Fig. 3. Starting from the non-
interacting limit where μ = EF as predicted by both BCS
and communal pairing theory, as interactions get stronger
μ decreases more quickly in communal pairing theory than
in traditional pairing theory. The trends established in the
communal state point towards a smooth evolution into the
BEC regime, with a smooth confinement of more Cooper pairs
with tighter spatial extent. The reduction of chemical potential
persists even when incorporating the T -matrix analysis.

This variation of chemical potential with interaction
strength may be verified directly by experiment, for example,
by considering the radius of a trapped ultracold atomic gas.
In the local density approximation, the chemical potential μ

FIG. 3. Plot of chemical potential against ln(kFa). The dashed
line shows the BCS mean-field result, the dotted-dashed line shows
the result obtained from treatment of Gaussian gap fluctuations using
the T -matrix method, and the solid line shows the T -matrix results
with our communal correction.

and the density n are related by μ ∝ nγ for some positive
γ [25], and so the radius of the trapped gas R is where
the local chemical potential vanishes, μ(R) ≡ μ − V (R) = 0,
where V (r) is the trapping potential. The radius of the trapped
gas is thus a direct measure of the chemical potential by
the relation R ∝ √

μ. The full variation is shown in Fig. 4
where we see the change in radius is significant and should
be readily observable in a cold atomic gas. While the figure
shows that our results indicate a collapse of the gas to a point
at ln(kFa) ≈ 0, this occurs beyond the region of validity of our
theory and is not expected to be experimentally observed.

V. DISCUSSION AND CONCLUSIONS

We have demonstrated the importance of communal cor-
rections to BCS theory by increasing variational freedom to
include multiple superconducting modes. Partial occupancy of

FIG. 4. Plot of the radius of a trapped interacting Fermi gas,
R, relative to the radius of a trapped noninteracting Fermi gas, R0,
against ln(kFa). The dashed line shows the BCS mean-field result,
the dotted-dashed line shows the result obtained from treatment of
Gaussian gap fluctuations using the T -matrix method, and the solid
line shows the T -matrix results with our communal correction.
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the temporally oscillating modes drives communal ordering
of the superconducting gap, with each nonzero gap mode
corresponding to a Cooper pair of net momentum q variation-
ally lowering the grand potential, resulting in a favoring of
multiple nonzero gap modes. Widening of the gap in momen-
tum space, and the concomitant confinement of the Cooper
pairs in real space with increasing interaction strength, points
to a connection between communal superconductivity and
the BEC-BCS crossover. Fluctuations of the gap itself were
incorporated through the T -matrix analysis [12] resulting in
a favorable comparison of the system energy with quantum
Monte Carlo results.

The analysis focuses on how the partial occupancy of
the temporal oscillating superconducting gap modes drive
the emergence of communal order. This partial occupancy
is driven by quantum fluctuations, that is, by the uncertainty
principle rather than temperature, and so persist down to zero
temperature where they affect the structure of the gap. We
neglected the effect of density fluctuations that result in the
GMB correction [21,22,33–36] as it simply decouples from
the superconducting analysis and reduces the superconducting
gap [21,33,34]. Magnetic fluctuations were neglected as these
are small in spin-balanced systems.

A significant experimental consequence of communal pair-
ing is the variation of chemical potential with scattering
length, which may potentially be observed in the radius of
trapped cold gases. In addition, other experimental tech-
niques such as radio-frequency spectroscopy [37,38] can
directly probe the chemical potential. This reduction of the
chemical potential compared to the BCS prediction may
contribute to the persistent overestimation of the chemical po-
tential by numerical methods compared to direct experimental
measurements, such as those by the Jochim group [39], with

the magnitude of this mismatch being particularly well de-
scribed by communal pairing theory near the unitarity limit
of ln(kFa) ≈ 1, where interactions are sufficiently strong for
effects to be visible beyond experimental uncertainty but still
within the range of validity of the theory presented.

Another possible experimental signature is that the spatial
structure of the superconducting gap should change with the
scattering length, from isotropic in the weakly interacting
limit to strongly confined in real space as interactions get
stronger and the system approaches the BEC limit. This may
be investigated in cold atomic gases, where control of the
scattering length is well established [37,38,40], for example,
using angle-resolved photoemission spectroscopy [41]. The
momentum-space structure of the gap could also be probed
directly using Bogoliubov quasiparticle interference imaging
[42]. In 2D, the analysis predicts that the superconducting gap
has a width in momentum space that is inversely proportional
to the scattering length, q2D = 2

a at weak interactions with
kFa < 2. In 3D, for weak interactions kFas → 0−, the width
is predicted to follow q(3D) ∝ kFeπ/2kFas . However, we have
demonstrated that low dimensionality promotes a higher Nq

and so the experimental verification might be more straight-
forward in 2D systems. The additional pairing channels may
also be visible through a range of retroreflected hole momenta
in Andreev reflection experiments.

Data used for this paper are available online [43].
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