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We describe a number of strategies for minimizing and calculating accurately the statistical uncertainty in
quantum Monte Carlo calculations. We investigate the impact of the sampling algorithm on the efficiency of
the variational Monte Carlo method. We then propose a technique to maximize the efficiency of the linear
extrapolation of diffusion Monte Carlo results to zero time step, finding that a relative time-step ratio of 1:4 is
optimal. Finally, we discuss the removal of serial correlation from data sets by reblocking, setting out criteria for
the choice of block length and quantifying the effects of the uncertainty in the estimated correlation length.
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I. INTRODUCTION

Quantum Monte Carlo (QMC) methods are a class of
stochastic ab initio techniques for solving the many-body
Schrödinger equation [1,2]. They are capable of achieving
accuracy comparable to that of post-Hartree-Fock quantum-
chemistry techniques but with a much lower computational
cost. The diffusion Monte Carlo (DMC) method in particular
has no close competitors for calculations of the energy of bulk
periodic systems.

The utility of QMC stems from the fact that the cost of
achieving a given error bar scales as ∼N3 for typical systems,1

where N is the number of quantum particles. The method
is most useful when studying systems for which quantum-
chemistry calculations are infeasible and density functional
theory does not give a sufficiently accurate description of
electronic correlation. The algorithms are intrinsically parallel,
allowing QMC to take full advantage of developments in
computer technology. The variational Monte Carlo (VMC)
algorithm, for example, is almost perfectly parallelizable.
Furthermore, existing QMC implementations are easily ex-
tended to different systems. One may apply the same basic
algorithms, changing only the form of the trial wave function
and the Hamiltonian, to systems comprising any combination
of particles and interparticle interactions. Because the trial
wave function can be an explicit function of interparticle
distances, the Kato cusp conditions and other correlation
effects can be described compactly, without the need for
large expansions of many determinants and other unwieldy
functional forms [3]. For a comprehensive overview of VMC
and DMC, the reader is directed to Refs. [1,2,4,5].

The practical challenges facing QMC are largely concerned
with improving the efficiency of the algorithms and the design
of new trial wave functions. The computational expense
of a large calculation necessitates careful selection of the

1Ultimately, for large N the scaling of DMC with system size
becomes exponential as discussed in N. Nemec, Phys. Rev. B 81,
035119 (2010).

operational parameters. Typically one has a certain amount of
computer time available within which one wishes to achieve
the smallest possible statistical error in the final result. In
addition, the extraction of an accurate statistical error bar from
serially correlated data is itself nontrivial. In this paper, we
outline how to choose the optimal parameters and algorithms
at the different stages of a QMC calculation and describe how
to process the resulting data.

This paper is structured as follows. Section II gives an
analysis of the many related factors contributing to the
efficiency of VMC calculations. Section III describes how
to improve the efficiency of DMC time-step extrapolation.
In Sec. IV we discuss the calculation of accurate error bars
using the reblocking method and describe a robust scheme
for choosing block lengths. We demonstrate in Sec. V that
uncertainty in the estimated correlation length results in
an error in the statistical error bar that can significantly
enhance the probability of observing outliers. Finally, we
draw our conclusions in Sec. VI. We use Hartree atomic units
(h̄ = |e| = me = 4πε0 = 1) throughout this article.

II. EFFICIENCY OF VMC CALCULATIONS

A. Method

In this section, we discuss practical schemes for achieving
maximal efficiency within the VMC method. We focus on
three aspects of a VMC calculation. The first is the sampling
algorithm, which is how moves are proposed. The second is
the use of decorrelation loops, which consist of additional
moves for which we avoid evaluating the local energy.
We will demonstrate that decorrelation loops can offer a
twofold increase in efficiency. To our knowledge, there are
no quantitative investigations of decorrelation loops in the
literature. The third factor we consider is the choice of time
step, which governs the width of the transition probability
density function (PDF). Our findings are summarized by the
set of recommendations in Sec. II E.

Variational Monte Carlo is the simplest and least compu-
tationally expensive QMC method. In the VMC method, the
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expectation value of the Hamiltonian Ĥ with respect to a trial
wave function �T is calculated using a stochastic integration
technique, giving a variational estimate for the ground-state
energy,

〈�T |Ĥ |�T 〉
〈�T |�T 〉 =

∫
dR|�T (R)|2EL(R)∫

dR|�T (R)|2 ≈ 1

n

n∑
i=1

Ei, (1)

where EL(R) = �−1
T (R)Ĥ�T (R) is the local energy and R

is a vector describing all the particle positions. The set
{Ei}i=1,...,n contains n energies and is produced by evaluating
Ei = EL(Ri) at n points {Ri}i=1,...,n in configuration space
distributed according to |�T (R)|2.

Due to the finite number of samples n, the VMC es-
timate of the energy of Eq. (1) has a statistical error �0

= σ0(n/ncorr)−1/2, where σ0 is the standard deviation of the
local-energy distribution and ncorr is the correlation length [6]
of the sequence of local energies.

The quantity σ0 only depends on the system and the trial
wave function, whereas ncorr also depends on the sampling
algorithm. Thus, for a given system, trial wave function, and
sampling algorithm, the statistical error diminishes with the
number of configurations sampled as n−1/2. Suppose one VMC
step takes a time Titer. A VMC calculation is more efficient the
less time it requires to reach a given statistical error �0, so
if a VMC run takes a CPU time of T = nTiter to sample n

configurations, an appropriate measure of its efficiency is

E = (
�2

0nTiter
)−1 = (

σ 2
0 ncorrTiter

)−1
, (2)

which is independent of n. The efficiency of a VMC calculation
can be improved by reducing the product ncorrTiter.

B. VMC sampling

The electronic configurations {Ri}i=1,...,n are generated
using the Metropolis algorithm [7], where a move from Ri to
R′

i is proposed with probability T (R′
i ← Ri) and is accepted

(i.e., Ri+1 = R′
i) with probability

A(R′
i ← Ri) = min

[
1,

T (Ri ← R′
i)

T (R′
i ← Ri)

∣∣�T (R′
i)
∣∣2

|�T (Ri)|2
]

, (3)

or otherwise rejected (i.e., Ri+1 = Ri). In fact, if the wave
function can be factorized, one can greatly improve efficiency
using multilevel sampling [8]. All of our calculations use two-
level sampling, in which we accept or reject the move first
based on the Slater determinant part of �T (R) and then (if the
Slater part of the move was accepted) based on the Jastrow
factor [1].

A simple, commonly used choice for T (R′
i ← Ri) is the

product of Gaussian distributions of variance τ (standard
deviation

√
τ ) for each of the Cartesian components of the

displacement of each electron. By analogy with DMC, τ is
often referred to as the VMC “time step,” although there is
no notion of time in the VMC formalism. We shall restrict
our analysis to the case of Gaussian transition probabilities.
Alternatives to this choice have been proposed [9,10], but
these studies focus on the statistical improvement for a given
number of iterations and do not analyze the total efficiency. The
simplicity of the Gaussian distribution represents an efficiency

advantage that is hard to offset with more exotic distributions.
Nonetheless, the conclusions presented here should mostly be
applicable to other transition probabilities.

1. Configuration-by-configuration and electron-by-electron
sampling

In the sampling algorithm we have just described, to go
from Ri to Ri+1 we propose an entire configuration move, and
we accept it or reject it with a single decision. This is what we
call configuration-by-configuration sampling (CBCS).

However, it is possible to generate Ri+1 from Ri by
proposing N successive single-electron moves and accepting
or rejecting each of them individually. The resulting algorithm
is electron-by-electron sampling (EBES), which allows larger
moves to be accepted, greatly reducing ncorr. This comes at
the cost of an increase in Titer, because evaluating the N

acceptance probabilities in EBES takes longer than computing
the single acceptance probability in CBCS.

2. Averaging local energies over proposed moves

It is possible to replace the average in Eq. (1) with an
expression where the local energies at R′

i and Ri are multiplied
by the acceptance and rejection probabilities, respectively, and
summed together. For CBCS, the expression is [11]:

〈�T |Ĥ |�T 〉
〈�T |�T 〉 ≈ 1

n

n∑
i=1

{A(R′
i ← Ri)EL(R′

i)

+ [1 − A(R′
i ← Ri)]EL(Ri)}. (4)

This expression is also a valid approximation to the VMC
energy, with the advantage that rejected moves contribute
to the sum, adding new data and improving the statistics,
especially when the acceptance ratio is low. This translates
into a reduction in ncorr. The evaluation of the additional local
energies increases Titer, however. We investigate the balance
of these factors below for CBCS.

We have avoided averaging the energy over proposed moves
in EBES since even with refinements it has been found to be
less efficient than the unmodified algorithm [12].

3. Decorrelation loops

It is possible to go from Ri to Ri+1 by proposing p

configuration moves in turn instead of just one. In this scheme
one generates a sample of n local energies by performing a
calculation consisting of pn moves and evaluating the local
energy at every pth configuration.

The cost of one step of a VMC calculation with a
decorrelation loop of length p is

Titer(p) = pTmove + Tenergy, (5)

where Tmove is the time it takes to propose and accept or reject
a single configuration move and Tenergy is the time it takes to
evaluate the local energy.2

2The details of the implementation may need to be taken into
account in this expression. An implementation could detect whether
all moves have been rejected between evaluations of the local energy
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It is possible to establish the precise form of the correlation
length ncorr(p) as a function of p. When n → ∞, ncorr is

ncorr = ncorr(1) = 1 + 2
∞∑

k=1

Ak, (6)

where Ak is the autocorrelation of local energies separated by
k steps,

Ak = 1

σ 2
0

〈(El − 〈E〉)(Ek+l − 〈E〉)〉l . (7)

If we assume that the autocorrelation is dominated by a single
exponential term, i.e., Ak = exp(−αk) then Eq. (6) becomes

ncorr = 1 + 2
∞∑

k=1

exp(−αk) = 1 + 2
exp(−α)

1 − exp(−α)
. (8)

Hence exp(−α) = (ncorr − 1)/(ncorr + 1), and the correlation
length at p is

ncorr(p) = 1 + 2
∞∑

k=1

Apk

= 1 + 2
(ncorr − 1)p

(ncorr + 1)p − (ncorr − 1)p
, (9)

which falls off as p−1 if ncorr is large. From Eqs. (2), (5), and (9)
we can build the full expression for E , and it is possible to find
the value of p that maximizes E analytically from estimates of
Tmove, Tenergy, and ncorr.

The usefulness of decorrelation loops depends on how
costly it is to evaluate local energies and how much serial
correlation is present. Were it the case that local energies
took no time to evaluate (i.e., Tenergy = 0), the inclusion of
decorrelation loops would not increase the efficiency E , and
if no serial correlation were present then ncorr(p) = 1, and
increasing p would simply increase the cost of each step.

C. Automatic optimization of τ

Although the VMC algorithm is valid for any positive time
step, the efficiency of the method depends strongly on τ . An
appropriate time step for EBES VMC can be very roughly
estimated as being such that the root-mean-square (rms)
distance moved by each electron at each time step is equal
to the most important physical length scale in the problem.
Assuming the acceptance probability of electron moves is
approximately 50%, the rms distance diffused is

√
3τ/2 in

three dimensions. In an electron gas the only physical length
scale is the radius rs of the sphere that contains one electron
on average, so the required time step is τ ≈ 2r2

s /3. In an atom
the length scale is somewhere between the Bohr radius 1/Z,
where Z is the atomic number, and 1 a.u.. However, it is clear
that these crude choices are far from optimal.

There are two commonly used approximate methods for
choosing τ ; aiming to achieve an acceptance ratio of 50% (the

to avoid unnecessary re-evaluations. In this case, the probability of
not having to calculate a local energy is the probability of having
rejected p consecutive moves, and Titer(p) becomes pTmove + [1
− (1 − a)p]Tenergy.

50% rule) and maximizing the diffusion constant. Both can
be implemented so this optimization occurs automatically and
inexpensively at the beginning of a VMC run.

In the “50% rule” it is assumed that the ratio a of accepted
moves to proposed moves is representative of the sampling
efficiency and that a value of 50% is near optimal. In general,
the two limits of 0% and 100% acceptance correspond to
a failure to properly explore phase space, but there is no
particular reason why a = 50% should correspond to optimal
sampling.

The diffusion constant D can be computed as the average of
the squared displacement between consecutive configurations
Ri and Ri+1.3 One might reasonably assume that choosing τ

to maximize D is an efficient strategy, although maximization
of D does not necessarily correspond to optimal sampling.
For example, in a CBCS study of the homogeneous electron
gas, rigidly translating all of the electrons together results in a
very large diffusion constant but clearly corresponds to poor
exploration of phase space.

D. Empirical data and analysis

We shall consider four basic choices to be made when
performing a VMC calculation with a Gaussian transition-
probability density: whether to use CBCS or EBES and
whether to average local energies over proposed moves, the
value of the “time step” τ , and the length of the decorrelation
loop p.

In order to study the effect of these choices, we have
performed VMC calculations for a set of six representative
systems: a pseudopotential N atom, an all-electron O atom, a
pseudopotential NiO molecule, an all-electron N2H4 molecule,
a three-dimensional homogeneous electron gas (HEG) com-
posed of 38 electrons at a density parameter of rs = 1 a.u.,
and a 16-atom supercell of a pseudopotential C diamond
crystal.4 For each system, we tested two trial wave functions:
one of the Slater-Jastrow form [1,13] and another of the
Slater-Jastrow-backflow form [14,15].

For each system and wave function, we have performed
calculations using EBES and CBCS, and for CBCS we have
run calculations with and without averaging over proposed
moves. Finally, for each system, wave function, and sampling
method, we have performed 160 VMC calculations covering
16 different values of τ and 10 different values of p. In
each case we have identified the maximum efficiency Eopt

= E(τopt,popt). To assess the performance of the “50% rule,”
we have located the value of the time step τ50% whose
acceptance ratio is closest to 50% and compared the efficiency
E50% = E(τ50%,popt) with Eopt. To assess the performance
of maximizing the diffusion constant, we have located the

3When we use decorrelation loops, we define D as the average of
the squared displacement between consecutive configurations within
the decorrelation loop, not between those for which the energy is
evaluated.

4Our calculations were performed on a cluster of eight 24GB,
dual-socket, quad-core, 2.66-GHz Intel Core i7 processors. However,
we have only quoted ratios of efficiencies in this paper, which should
be largely architecture independent.
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TABLE I. Optimal parameters and comparison of different
efficiencies for EBES using Slater-Jastrow wave functions. Pseu-
dopotentials (pp) were used in some of the calculations.

System τopt popt aopt E50%/Eopt EDmax/Eopt Ep=1/Eopt

N (pp) 0.20 3 55% 1.00 0.52 0.65
O 0.05 3 58% 0.94 0.40 0.68
NiO (pp) 0.20 5 44% 0.94 0.39 0.41
N2H4 0.05 3 64% 0.62 0.09 0.71
HEG 1.00 3 37% 0.93 0.96 0.73
Diamond 1.00 3 32% 0.94 0.66 0.60

value of the time step τDmax with the maximum D and com-
pared the efficiency EDmax = E(τDmax ,popt) with Eopt. To assess
the importance of decorrelation loops, we have compared
the efficiency Ep=1 = E(τopt,1) with Eopt. The results of these
comparisons are given in Table I for EBES and Table II for
CBCS, in both cases for the Slater-Jastrow wave function only;
the data for the Slater-Jastrow-backflow wave function are
nearly identical and are not shown.

For the periodic systems the acceptance ratio in EBES
does not reach zero as τ is increased, and as a conse-
quence the efficiency presents a plateau in that region, where
we find that E is close to Eopt. In EBES we also find that
the “50% rule” consistently gives efficiencies within 10%
of the maximum, with the exception of the N2H4 molecule,
where the optimal acceptance ratio is larger. Maximization
of the diffusion constant in EBES consistently gives time
steps that are too large and yields efficiencies below about
50% of the maximum possible for finite systems and between
65% and 95% of the maximum for periodic systems. In
CBCS, maximizing the diffusion constant achieves reasonable
efficiencies, often within 10% of the maximum value, while
the “50% rule” gives increasingly poor results as the system
size increases. Decorrelation loops improve the efficiency in
EBES by between 50% and 150%. In CBCS these become
more important and enhance E by up to a factor of 7.

In Table III we compare the maximum efficiency en-
countered in EBES EEBES with that in CBCS ECBCS for
Slater-Jastrow (SJ) and Slater-Jastrow-backflow (SJB) wave
functions. The fifth and sixth columns of Table III show
the comparison for CBCS when a single energy is evaluated
per configuration move (ECBCS) and where averages of local
energies over proposed moves are carried out (ECBCS2).

EBES is more efficient in all cases, with the exception of the
backflow calculations on the pseudopotential N atom and the
all-electron N2H4 molecule. The improvement in efficiency

TABLE II. Optimal parameters and comparison of different
efficiencies for CBCS using Slater-Jastrow wave functions.

System τopt popt aopt E50%/Eopt EDmax/Eopt Ep=1/Eopt

N (pp) 0.10 8 32% 0.87 0.90 0.33
O 0.01 8 27% 0.82 0.82 0.64
NiO (pp) 0.02 36 17% 0.70 1.00 0.13
N2H4 0.01 13 16% 0.59 1.00 0.42
HEG 0.05 36 9% 0.54 0.88 0.47
Diamond 0.02 36 11% 0.25 0.79 0.13

TABLE III. Comparison of the efficiency of EBES and CBCS
for Slater-Jastrow (SJ) and Slater-Jastrow-backflow (SJB) wave
functions, and also for averaging local energies over proposed moves
(CBCS2) and computing a single energies (CBCS).

EEBES/ECBCS ECBCS/ECBCS2

System N SJ SJB SJ SJB

N (pp) 5 1.05 0.90 1.22 1.24
O 8 1.47 1.07 1.10 1.17
NiO (pp) 16 1.65 1.22 1.38 1.52
N2H4 18 1.93 0.83 1.11 1.53
HEG 38 3.11 1.95 1.27 1.25
Diamond 64 4.70 2.36 1.14 1.24

that EBES offers over CBCS increases with system size.
Averaging energies over proposed moves is found to be less
efficient in every case.

E. Recommendations

Our key finding is that decorrelation loops increase the
efficiency of EBES by roughly a factor of 2 and that of CBCS
by much more. One can use the expressions in Sec. II B 3 to
determine the optimal loop length p, although in practice a
decorrelation period of p = 3 delivers near-optimal efficiency
in the EBES algorithm for a wide range of systems.

Based on the data presented in Sec. II D, we suggest that
EBES should nearly always be used in VMC, the only possible
exception being for small systems with fewer than about 20
electrons when backflow is used. (Even in this case, CBCS
is not much more efficient than EBES.) When using EBES,
one should use the “50% rule” to optimize the time step τ . If
CBCS is used, one should maximize the diffusion constant to
optimize the time step τ . Finally, we find that accumulation
methods which average local energies over proposed moves
are less efficient for every system tested.

III. OPTIMIZING DMC TIME-STEP EXTRAPOLATION

DMC is a Green’s function projector method for solving
the Schrödinger equation in imaginary time. In DMC, the
ground-state distribution is represented by the density of
walkers (points in configuration space) rather than by an
analytic function. Propagation of a population of walkers in
imaginary time projects out the ground-state component of the
initial DMC wave function [1,16].

The DMC algorithm is accurate only in the limit of small
time step τ . However, the computational effort required to
achieve a given error bar goes as 1/τ , ruling out the use of in-
finitesimal time steps in practice. Hence, where high accuracy
is required, two or more finite time steps {τi} are generally
used and the ground-state energy is obtained by extrapolating
to τ = 0 [1,2]. Here we explain how the statistical error in a
zero-time-step extrapolate may be minimized by a judicious
choice of time steps {τi}, and the prudent deployment of a
limited total computing time between those time steps.

For sufficiently small τ , the DMC energy scales linearly
with the time step as E(τ ) = E0 + κτ . Suppose we calculate
E(τ ) at R different time steps {τi} in the linear-bias regime,
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where each E(τi) has an associated statistical uncertainty �i .
The error bars fall off with the time step τi and the CPU time
devoted to the calculation Ti as �i = C/

√
τiTi , where C is a

constant. To determine the ground-state energy at zero time
step E0, we minimize the χ2 error of the linear fit,

χ2 =
R∑

i=1

[E(τi) − E0 − κτi]2

�2
i

= 1

C2

R∑
i=1

Tiτi[E(τi) − E0 − κτi]
2 (10)

with respect to κ and E0. Setting ∂χ2/∂κ = ∂χ2/∂E0 = 0,
we obtain

E0 = 2
∑R

i=1

∑R
j=1 E(τi)TiTj τiτ

2
j (τj − τi)∑R

i=1

∑R
j=1 TiTj τiτj (τj − τi)2

. (11)

Assuming the data are Gaussian distributed, the square of the
standard error in the extrapolate E0 is

�2
0 ≈

R∑
k=1

�2
k

[
∂E0

∂E(τk)

]2

= 4C2
R∑

k=1

Tkτk

[ ∑R
j=1 Tjτ

2
j (τj − τk)∑R

i=1

∑R
j=1 TiTj τiτj (τj − τi)2

]2

.

(12)

As expected, the standard error falls off as the time steps
{τi} are increased and as more time {Ti} is dedicated to the
calculations. However, τ should not be increased beyond τmax,
the limit of the region in which the bias is linear. The effort
allocated to the calculations cannot be increased indefinitely
because one is constrained by the total time T = ∑R

i=1 Ti for
all of the simulations. We now minimize �2

0 subject to the
constraint that T is fixed.

Let us first suppose that we are to perform just R = 2
simulations. We start by fixing the time steps τ1 and τ2, and
minimizing �2

0 with respect to the run lengths in the presence
of a Lagrange multiplier to constrain the total run time T .
This yields the optimal simulation durations T1 = T τ

3/2
2 /(τ 3/2

1

+ τ
3/2
2 ) and T2 = T τ

3/2
1 /(τ 3/2

1 + τ
3/2
2 ). This deployment at-

tempts to reduce the error bar on the calculation with the
smallest time step beyond the distribution of effort T1/T

= τ2/(τ1 + τ2) that would ensure error bars of equal size.
Without loss of generality, we now assume that τ2 > τ1, with
τ2 = τmax pinned near the boundary of the linear regime, and
we search for the optimal time step τ1. Using the optimal
durations T1 and T2, minimization of �2

0 reveals that the
optimal choice of time step is τ1 = τ2/4. The corresponding
optimal physical run times are therefore T1 = 8T/9 and
T2 = T/9. The full dependence of the final error on the relative
time step τ1/τ2 is shown in Fig. 1.

Now suppose that more than two time steps are used to
perform the extrapolation. We find that �2

0 is minimized when
all the computational effort is dedicated to the two points
that are nearest to having a relative time step of 4 and have
the largest maximum value of τ . Computational effort should
therefore be focused solely on that optimal pair as long as the

0.1 0.2 0.3 0.4 0.5
τ1 / τ2

10

12

14

(Δ
 / 

Δ τ
m

ax
)2

Analytic, T2 / T1 = (τ1 / τ2)3/2

Analytic, T2 / T1 = τ1 / τ2

DMC, T2 / T1 = (τ1 / τ2)
3/2

DMC, T2 / T1 = τ1 / τ2

FIG. 1. (Color online) The uncertainty in the extrapolated DMC
energy against relative step size, τ1/τ2. The solid line and circles show
the uncertainty in the extrapolated results obtained with the optimal
relative run times [T1/T2 = (τ2/τ1)3/2], and the dashed line and the
triangles with the effort distributed such that the energies have equally
sized error bars (T1/T2 = τ2/τ1). The symbols are DMC data from
the one-dimensional HEG. The error bars are normalized by �τmax,
the error bar of a DMC run at the upper time step τ2 if all of the
computational resources (T1 + T2) were dedicated to it.

linear regime is well defined. There is thus no advantage to
using more than R = 2 data points.

Our scheme is the optimal extrapolation procedure when
the extent of the linear regime is known. The strategy is thus
highly applicable to studies of many similar systems where
the linear regime can be assumed to be the same for multiple
runs. For systems where the behavior of the time-step bias has
not been established, one has no alternative but to perform
multiple runs over a wide domain of time steps and determine
where the spectrum first increases superlinearly. In such cases,
one can use the rms distance diffused by an electron over a
single step as an initial order-of-magnitude estimate for where
the linear regime begins. For all-electron atomic systems, for
example, one would expect the linear regime to occur for time
steps less than of the order τ = 1/(3Z2), where Z is the largest
atomic number occurring in the system. This choice of time
step ensures that the rms distance diffused is equal to one Bohr
radius of the largest atom under study. For a homogeneous
electron gas, where the only physically significant length scale
is defined by the density, the equivalent time step would be τ

= (r2
s )/d, where rs is the radius of the sphere (circle in 2D) that

contains one electron on average and d is the dimensionality.
Time-step bias is reduced when the modifications of Ref. [5]
are made to the DMC Green’s function and also when higher-
quality wave functions are used.

If one has accumulated a significant set of results for
τ < τmax in determining the extent of the linear regime, the
prescription for minimizing the error in the extrapolate has the
potential to differ from the two-run procedure. If one has a
large amount of computing time remaining after determining
τmax, the two-run approach is unchanged. In the event that
little computing time remains after determining τmax, one
should devote the remaining time to the run whose contribution
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falls the quickest with computer time, i.e., the run i with the
most negative value of ∂�0/∂Ti , which may be found from
Eq. (12).

Avoiding higher-order fitting functions and using only
data from within the linear regime for the extrapolation is
the most robust strategy. Though the formalism here can
be extended to study higher-order fitting functions, finding
the appropriate regimes for higher-order terms would require
a larger amount of computational effort and there is a
danger of numerical stability and branching problems affecting
calculations for very large τ . Linear extrapolation is always an
option since the leading-order term in the bias is known to be
O(τ ).

We highlight the benefits of the two-run extrapolation
procedure with an example calculation on the 1D HEG.
Once the maximum allowed time step τmax in the linear
regime had been determined, pairs of runs were performed
at τ2 = τmax and incrementally smaller time steps τ1. The
pairs of runs were each performed using the same total
amount of computing time. The time was distributed either to
ensure equal-sized error bars or according to the prescription
T1/T2 = (τ2/τ1)3/2 to guarantee minimal final extrapolated
error. The simulation times were sufficient to ensure that
the data could be reblocked for accurate error estimates.
The final extrapolated energy estimates all agreed to within
the expected uncertainty, consistent with the assertion that all
of the time steps are within the linear regime. The results
shown in Fig. 1 highlight that, for the range of τ2/τ1 tested,
there is strong agreement between the analytical prediction and
the DMC results. In particular, the error bar on the extrapolate
with the optimal distribution of effort is clearly minimized by
the choice τ2/τ1 = 4. The distribution of effort according to
T1/T2 = (τ2/τ1)3/2 yields a modest computational advantage
over the choice T1/T2 = τ2/τ1.

In summary, to minimize the statistical error bar on the
DMC energy extrapolated to zero time step, one should
perform one DMC calculation at the largest time step τmax

for which the bias is still linear in the time step and a second
DMC calculation with time step τmax/4. Eight times as much
computational effort should be devoted to the latter calculation
as to the former. One could use a similar approach to optimize
the efficiency of extrapolating to infinite population or to
infinite system size in a QMC study of condensed-matter
systems.

IV. REBLOCKING

The use of small time steps in DMC results in serially
correlated data. For accurate estimates of the statistical
uncertainties of DMC expectation values, the serial correlation
must be accounted for. Here, we investigate reblocking [17],
which is advantageous due to its computational convenience
and ease of implementation. We propose a scheme for the
choice of block length such that accurate error bars may
be reliably determined when an estimate for the correlation
length is unavailable and must be obtained directly from the
data.

For most random processes used in Monte Carlo methods
the serial correlation is purely positive, so the standard error
(treating all samples as independent) should be multiplied by

an error factor ηerr � 1. Let the new estimate of the standard
error be �, and let ν be n divided by the estimated correlation
length, i.e., ν � n measures the estimated effective number of
steps. We may express � as

� = ηerr

√
var[Ei]/n =

√
var[Ei]/ν, (13)

where var[Ei] is the sample variance of the n data points {Ei}
and the error factor ηerr is the square root of the estimated
correlation length [6]. As each step of a QMC calculation
is associated with a time step τ measured in physical units,
a correlation time in physical units can be defined as tcorr

= τncorr(τ ). In the limit τ → 0, the integrated correlation time
tcorr becomes independent of τ and takes a value characteristic
of the system under study.

To estimate ηerr from a set of data points Ei , there are several
commonly used approaches: computing the correlation length,
reblocking, or using resampling techniques like the jackknife
and bootstrap methods [6,17–19]. Here we have focused
on the reblocking method because it is computationally
convenient (and conceptually very simple) to apply reblocking
continuously as local observable data are appended to the
stored results, vastly reducing memory requirements [20]. A
naive calculation of the correlation-corrected statistical error
necessitates the storage of O(n) observable values, whereas
reblocking on-the-fly reduces this to O[log(n)].

Reblocking is a method in which a sequence of n serially
correlated data points is divided into contiguous blocks of
length B, and the raw data are averaged within each of these
blocks, defining a new data set of length n/B. The naive
variance of the reblocked estimate of the mean is larger than
that of the original data, although the mean itself is unchanged.
The estimated error initially increases with B, reaching a
plateau once the serial correlation has approximately been
removed from the data. When B approaches n, the plot
becomes very noisy due to the small number of blocks.

The reblocking analysis of a typical DMC run is shown in
Fig. 2. The fundamental difficulty in interpreting this kind
of data is the choice of an appropriate block size. In the
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FIG. 2. (Color online) Reblocking analysis of a typical DMC run
(Li atom, with τ = 0.01 a.u. and 900 000 time steps). The optimal
block size is chosen by the algorithm described in the text.
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TABLE IV. The estimated correlation length found from reblock-
ing DMC data with block size B. The system was the Li atom with
τ = 0.01 a.u. and 900 000 time steps.

log2 B Estimated ncorr

1 1.762(4)
2 3.140(9)
3 5.51(2)
4 9.34(5)
5 14.7(1)
6 21.0(2)
7 28.9(5)
8 34.0(8)
9 36(1)
10 39(2)
11 40(3)
12 37(3)
13 42(6)
14 44(8)

case presented here, the run time of 900 000 time steps was
sufficiently long to form a clear plateau in the reblock plot.
However, individually inspecting the reblocked data of each
calculation to make a choice by eye is neither objective nor
efficient. Table IV shows the estimated correlation lengths
from reblocking the Li data with different block lengths.

A simple yet robust algorithm for automatically choosing
the best block size is as follows. Following Ref. [6], the block
size

Bopt = 3

√
2nn2

corr (14)

offers an appropriate balance between the systematic and the
statistical error in the estimate of the standard error for any
set of n data points with the integrated correlation length ncorr.
If a good estimate for ncorr is available before the data are
analyzed, it is best to use this and thereby make the choice of
the block size independent of the statistical data themselves.
In many studies, several runs on similar systems are needed
or the knowledge of tcorr can be used to extrapolate ncorr to
small time steps. In such cases it is best to estimate ncorr once
and reuse it for the choice of Bopt in subsequent calculations,
provided that the physical system and wave-function quality
(and thus the correlation length) are unchanged. The error
factor ηerr obtained in each case can then be used to double-
check the transferability of the estimated correlation length
without influencing the choice of Bopt, so there is no bias from
manually making a data-dependent choice.

If an independent estimate for ncorr is not available, it has
to be obtained from the analyzed data themselves. In this case,
the estimated correlation length η2

err depends on the choice of
B, so the condition for Bopt becomes recursive. We consider
block sizes that are powers of 2 and start with the largest block
size possible, decreasing B and examining the error factor.
The optimal block size is then the last value of B for which
the inequality B3 > 2nη4

err(B) is satisfied. We may restrict
B to powers of 2 since the block length is expected to be
logarithmically distributed.

In a reblocking analysis for n data points, the relative error
in the error factor for a given block size depends only on the
number of blocks as

δηerr (B)

ηerr (B)
=

√
B

2n
. (15)

Assuming that a user would typically expect at least one
significant digit in the standard error, we can further define
a straightforward criterion for the success of a reblocking
analysis: if Bopt < n/50, the analysis can be accepted as
successful, otherwise the reliability of the result is questionable
and one should gather more data. Except for systems with
distinct correlation times at extremely different scales, this
criterion is expected to be reliable in all typical cases occurring
in QMC. More than one correlation time might occur in weakly
bound molecules; the longest correlation time is defined by the
size of the molecule and the shortest is determined by the Bohr
radius of the nucleus with the highest atomic number. In such
cases, it may be necessary to accumulate more data; the block
size should clearly be determined by the longest correlation
length.

In summary, when using reblocking to remove serial
correlation from QMC data, one should ideally obtain an
accurate estimate of the correlation length separate from the
data being analyzed and use Bopt = 3

√
2nn2

corr to determine the
block length [6]. If this is not possible, one should aim to
satisfy the inequalities B3 > 2nη4

err(B) and Bopt < n/50 for a
reliable and accurate estimate of the error.

All methods of accurately calculating the error bar from
serially correlated data implicitly estimate the correlation
length. The noise and associated uncertainty in estimates of the
correlation length introduce error into the estimated statistical
error bar. In the next section we describe how this can increase
the apparent number of outlying results.

V. OUTLIERS IN QMC RESULTS

A. Introduction

In this section, we investigate the frequency with which
“outliers” occur in QMC results. We define an outlier as a result
located more than a given number of estimated error bars from
the underlying mean value. For example, one may fit a straight
line to DMC energies at small τ . If there are sufficient data
points, the linear fit is a good estimate of the underlying mean;
one would usually expect, by the central limit theorem (CLT), a
fraction 0.32 of the points to deviate from the fitted function by
more than a single error bar. Here we address the observation
that QMC estimates can lie outside statistical error bars of
the underlying mean more often than one would expect were
the error bars correctly describing the width of an underlying
Gaussian distribution. We will demonstrate that uncertainty in
the estimated correlation length is largely responsible for this
effect.

We begin with direct observation of the numbers of outliers
for two systems, the C atom and the Si crystal. By performing
a large number of short VMC calculations for each system,
we count directly the number of energies occurring more
than Q error bars from the underlying mean, where the error
is estimated separately for each run. Each estimate of the
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statistical error is also implicitly an estimate of the correlation
length, as described by Eq. (13).

To complement the direct approach, we then derive an
analytic expression for the fraction of points expected to lie
more than Q error bars from the mean under the assumption
that the distribution of local energies is Gaussian. The resulting
expression depends on the distribution of estimated correlation
lengths. Finally, we compare the expected result from this
purely Gaussian model process with that found earlier from
VMC, forming conclusions about the validity of the Gaussian
assumption and the origin of outliers.

B. VMC calculations

We have performed a large number of VMC calculations
for two typical systems; the all-electron carbon atom and
a periodic crystalline silicon system. For the C atom we
performed 5 × 104, 2 × 104, and 104 calculations of length
200, 500, and 1000 steps, respectively. The Si system used
a periodic simulation cell containing 54 silicon atoms, where
the 1s22s22p6 electrons are described by pseudopotentials. For
the Si system, we performed 1.5 × 105, 7.5 × 104, and 3 × 104

calculations of length 100, 200, and 500 steps, respectively.
A short calculation yields an energy and estimated error.

From the data we estimate the probability P
(
δĒ > Q�

)
of

observing a VMC energy Ē at a position more than Q� from
the true mean E0, where δĒ = |Ē − E0| and � is the estimated
error bar, itself also a random variable. The underlying mean
E0 is calculated accurately using a much longer run. If the error
bars exactly described the width of an underlying Gaussian
distribution, one would expect P

(
δĒ > Q�

) = erfc(Q/
√

2).
The symbols in Figs. 3 and 4 show the deviation of the VMC
results from this ideal case.

By estimating the statistical error bar for each run, we are
able to estimate pind, which is the distribution of the estimated
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FIG. 3. (Color online) Enhancement to the probability of observ-
ing an energy more than Q error bars from the mean for 54-atom
(216-electron) bulk Si. The square, circular, and triangular symbols
show the results of VMC calculations of n = 100, 200, and 500 local
energies, respectively. The number of calculations for each set was
(1.5 × 107)/n. The lines show the results of evaluating the integral
of Eq. (20), where ν0 and pind were determined from the VMC data.
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FIG. 4. (Color online) Enhancement to the probability of observ-
ing an energy more than Q error bars from the mean for the C
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calculations with n = 200, 500, and 1000 local energies, respectively.
The number of calculations for each set was 107/n. The lines
represent the results of evaluating the integral of Eq. (20), where
ν0 and pind were determined from the VMC data.

effective number of steps ν = n/η2
err, where n is the number of

VMC steps and ηerr is the error factor of Eq. (13). An example
kernel estimate of pind is shown in Fig. 5; one can see that
ν is occasionally larger than n. This is clearly unphysical,
stemming from noise in the estimate of the correlation length,
and results in underestimation of the statistical error bar. The
distribution pind appears to decay at large ν as ν−A, where A

is between 4.5 and 6.5.
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FIG. 5. (Color online) Distribution of ν = n/η2
err from performing

5 × 104 all-electron VMC calculations for the C atom. Each calcula-
tion consisted of n = 200 steps and the error factors were obtained
by reblocking. The dashed lines show the accurate effective number
of steps, ν0, and the effective number of steps corresponding to no
serial correlation, ν = n.
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C. Gaussian model

We now attempt to replace VMC sampling with an ideal
process where the underlying distributions are Gaussian. Our
starting point is the distribution of local energies, ploc, from
which energies are drawn at successive points along the
random walk in configuration space. The quantity of interest
is again the probability P

(
δĒ > Q�

)
of observing a sample

mean energy Ē at a position more than Q� from the true
mean E0.

Let us assume that the distribution of local energies is
Gaussian,

ploc(EL) = 1√
2πσ0

exp

[−(EL − E0)2

2σ 2
0

]
, (16)

where σ 2
0 is the variance of the distribution. Consider drawing

n samples {Ei}i=1,...,n from the PDF of Eq. (16) using the
Metropolis algorithm; this yields ν0 � n independent samples
due to serial correlation. For this simple case the sample mean,
Ē = (1/n)

∑n
i=1 Ei , has the distribution

pave(Ē) =
√

ν0

2πσ 2
0

exp

[−(Ē − E0)2

2σ 2
0 /ν0

]
. (17)

The statistical error bar on Ē is calculated from the
same set of local energies as the estimate itself. However,
since estimates of the correlation length are subject to noise,
there is uncertainty in the effective number of independent
samples. Although this leaves Ē unaffected, it does influence
the estimated error. As before, we define ν as the random
estimate of ν0 and again refer to the PDF pind from which ν is
drawn.

It is well known that a sum of squares of normally
distributed random numbers follows the χ2 distribution [21].
Since the error bar � is related to the sample variance through
Eq. (13), we can write down the bivariate PDF perr for �

and ν,

perr(�,ν) =
�ν−2 exp

[
− ν(ν−1)�2

2σ 2
0

]
pind(ν)[

ν(ν−1)
σ 2

0

] 1−ν
2

2
ν−3

2 �
(

ν−1
2

) , (18)

where � is only allowed to take positive values and � is
the � function. It is straightforward to find analytically the
probability of observing an energy more than Q error bars
from the mean as a function of Q and �. This is done by
integrating Eq. (17),

2
∫ ∞

E0+Q�

dĒ pave(Ē) = erfc

(
Q�

σ0

√
ν0

2

)
. (19)

To find the desired probability, P
(
δĒ > Q�

)
, we evaluate the

expectation value of Eq. (19) with respect to the distribution
of � and ν,

P
(
δĒ > Q�

) =
∫ ∞

2
dν

∫ ∞

0
d� perr(�,ν)

× erfc

(
Q�

σ0

√
ν0

2

)
, (20)

where we have used the fact that the sample mean and sample
variance are independent for Gaussian distributed random

variables [22,23]. To evaluate the integral of Eq. (20), we
require the distribution pind and an accurate estimate of the
true effective number of steps, ν0. We will take these quantities
from the VMC results of Sec. V B, so the integral of Eq. (20)
represents an ideal Gaussian process accompanied by the
uncertainty in the number of independent samples (and thus
the correlation length) that we observe in VMC. The integral
of Eq. (20) can then be evaluated numerically.

D. Results

Figures 3 and 4 show the actual fractions of outliers from
the VMC calculations compared with those predicted by
Eq. (20), which used pind and ν0 from the VMC calculations
but otherwise assumed a model Gaussian process. The fraction
of points occurring more than Q error bars from the mean
has been offset by erfc(Q/

√
2) in the figures to highlight the

deviation from the result when the correlation length is known
exactly, i.e., pind(ν) = δ(ν − ν0).

When n takes smaller values, the uncertainty in the
correlation length is greater and the fraction of points that
may be classified as outliers is larger. A poor trial wave
function could also contribute to the effect by reducing the
sampling efficiency. In the case of the C atom, instead of
the 0.13 probability of observing an energy more than 1.5
error bars from the mean that one would expect on the basis
of Gaussian statistics, the VMC results are consistent with
a 0.25 probability (for runs of 200 local energies). For the
C and Si systems, estimating the error bars for each short
run using a single more accurate estimate of the correlation
length (from a single longer run or by averaging the estimates
from each shorter run), results in a return to P (δĒ > Q�) =
erfc(Q/

√
2).

For systems exhibiting singularities in the local energy,
the CLT converges only very slowly and one might expect the
non-Gaussian character of pEL

to play a role in determining the
frequency with which outliers are observed [24]. Singularities
in the local energy arise when the description of the wave-
function nodes is inexact, as is the case for the C and Si
systems considered here, and when the cusp conditions are
unfulfilled.

We find that the contribution from the non-Gaussian parts of
the energy PDF toward the frequency of outliers is statistically
insignificant. The evidence for this is twofold; first, the
integrals based on a purely Gaussian ploc agree very well with
the VMC data, suggesting that uncertainty in the correlation
length is almost solely responsible for the effect. Second,
attempting to fit a function with power law tails (of the form
suggested in Ref. [24]) to the VMC energies yields very small
values for the weight under the tails (usually within error bars
of zero), even though the distribution of local energies is itself
manifestly non-Gaussian.5

5We form a biased estimate for the weight of the power-law tails by
fitting Eq. (48) of Ref. [24] to the distribution of energies obtained
from 104 VMC runs, each of 1000 steps. We find λ3 = 1.1(8) and
λ3 = 0.2(4) for the C atom and the bulk Si system, respectively. The
χ 2 error in the fit was 0.95 per data point for the C atom and 1.03 per
data point for the bulk Si system.
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In conclusion, when there are too few data to make an
accurate estimate of the correlation length, the estimated error
is subject to an uncertainty that increases the probability of
observing outliers. For isolated calculations of a single run,
the problem amounts to the gathering of sufficient data for an
accurate estimate of the correlation length. Where dependence
on several parameters is being investigated for large systems,
one should calculate accurately the correlation length from a
single long run or by averaging many estimates from shorter
runs. The accurate estimate of the correlation length can then
be interpreted as the square of the error factor, ηerr, and used
to calculate the error bars on related calculations in two ways:
either by guiding the choice of block length (B3 = 2nη4

err) or
by multiplying the unreblocked error by ηerr; the two estimates
should be roughly consistent.

VI. CONCLUSIONS

In this paper we have developed and carefully tested new
ways of improving the efficiency of QMC calculations.

Our analysis of VMC efficiency shows that the use of
decorrelation loops approximately doubles the efficiency of
EBES, with a loop of three moves providing the greatest benefit
for a wide range of systems. The improvement in efficiency
for CBCS is much greater. However, we find that EBES rather
than CBCS yields a higher efficiency, except in small systems
where backflow transformations are used. Of the automatic
schemes for optimizing the time step that we have considered,
attempting to achieve a move acceptance ratio of 50% leads to
the greatest efficiency within EBES.

For the extrapolation of DMC energies to zero time step
there is a clear optimal strategy. One must first find the largest
time step τ2 for which the energy can be considered to vary
linearly with time step. One should then minimize the error in
the extrapolate by performing calculations at two different time
steps; the first at τ1 = τ2/4 with computational effort 8T/9,
and the second at τ2 with computational effort T/9, where T

is the total computing time available.
The reblocking method of removing serial correlation from

QMC data offers a significant computational advantage over

other methods. Ideally, when choosing a block size, one should
estimate the correlation length for a system independently of
the serially correlated data themselves. The optimal block
length B should be chosen such that B3 > 2nη4

err and B <

n/50 [where n is the number of data points and ηerr is the error
factor of Eq. (13)]. This allows automated data processing with
a warning criterion for insufficient data that works reliably
in the absence of multiple correlation periods occurring on
distinctly different scales.

Finally, we note that uncertainty in the correlation length
leads to estimated error bars that have the potential to increase
the probability of observing outliers in QMC results. The size
of the effect is dependent on the system and wave function.
One can alleviate the problem by calculating the statistical
error using an accurate estimate of the correlation length from
a longer run. Otherwise, our findings highlight the importance
of sufficient statistics gathering and caution when interpreting
DMC results for large systems.

Quantum Monte Carlo techniques are not as widely used
as other methods due to their computational expense and
the complexity of carrying out a calculation. In addition
to improving the statistical and computational efficiency
of QMC calculations, the strategies we have described are
straightforward to automate. With the implementation of such
schemes, QMC has the potential to evolve into a true black-box
tool. This will facilitate wider use of the method and improve
its reliability.
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[15] P. López Rı́os, A. Ma, N. D. Drummond, M. D. Towler, and
R. J. Needs, Phys. Rev. E 74, 066701 (2006).

[16] D. M. Ceperley and B. J. Alder, Phys. Rev. Lett. 45, 566
(1980).

[17] H. Flyvbjerg and H. G. Petersen, J. Chem. Phys. 91, 461 (1989).

066706-10

http://dx.doi.org/10.1103/RevModPhys.73.33
http://dx.doi.org/10.1103/RevModPhys.73.33
http://dx.doi.org/10.1088/0953-8984/22/2/023201
http://dx.doi.org/10.1002/cpa.3160100201
http://dx.doi.org/10.1063/1.465195
http://dx.doi.org/10.1063/1.465195
http://dx.doi.org/10.1016/S0010-4655(03)00467-3
http://dx.doi.org/10.1063/1.1699114
http://dx.doi.org/10.1063/1.1311288
http://dx.doi.org/10.1103/PhysRevLett.71.408
http://dx.doi.org/10.1063/1.476862
http://dx.doi.org/10.1063/1.476862
http://dx.doi.org/10.1103/PhysRevB.16.3081
http://dx.doi.org/10.1103/PhysRevB.16.3081
http://dx.doi.org/10.1103/PhysRevB.70.235119
http://dx.doi.org/10.1103/PhysRevB.70.235119
http://dx.doi.org/10.1103/PhysRevB.48.12037
http://dx.doi.org/10.1103/PhysRevB.48.12037
http://dx.doi.org/10.1103/PhysRevE.74.066701
http://dx.doi.org/10.1103/PhysRevLett.45.566
http://dx.doi.org/10.1103/PhysRevLett.45.566
http://dx.doi.org/10.1063/1.457480


STRATEGIES FOR IMPROVING THE EFFICIENCY OF . . . PHYSICAL REVIEW E 83, 066706 (2011)

[18] J. Shao and D. Tu, The Jackknife and Bootstrap, Springer Series
in Statistics (Springer Verlag, Berlin, 1995).

[19] M. Chernick, Bootstrap Methods: A Guide for Practitioners and
Researchers, Wiley series in probability and statistics (Wiley
Interscience, New York, 2008).

[20] D. R. Kent, IV, R. P. Muller, A. G. Anderson, W. A. Goddard
III, and M. T. Feldmann, J. Comput. Chem. 28, 2309 (2007).

[21] W. Cochran, in Mathematical Proceedings of the Cambridge
Philosophical Society (Cambridge University Press, 1934),
Vol. 30, pp. 178–191.

[22] R. C. Geary, Suppl. J. R. Stat. Soc. 3, 178 (1936).
[23] D. D. Boos and J. M. Hughes-Oliver, Am. Stat. 52, 218

(1998).
[24] J. R. Trail, Phys. Rev. E 77, 016703 (2008).

066706-11

http://dx.doi.org/10.1002/jcc.20746
http://dx.doi.org/10.2307/2983669
http://dx.doi.org/10.2307/2685927
http://dx.doi.org/10.2307/2685927
http://dx.doi.org/10.1103/PhysRevE.77.016703

