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Tail-regression estimator for heavy-tailed distributions of known tail indices
and its application to continuum quantum Monte Carlo data
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Standard statistical analysis is unable to provide reliable confidence intervals on expectation values of
probability distributions that do not satisfy the conditions of the central limit theorem. We present a regression-
based estimator of an arbitrary moment of a probability distribution with power-law heavy tails that exploits
knowledge of the exponents of its asymptotic decay to bypass this issue entirely. Our method is applied
to synthetic data and to energy and atomic force data from variational and diffusion quantum Monte Carlo
calculations, whose distributions have known asymptotic forms [J. R. Trail, Phys. Rev. E 77, 016703 (2008);
A. Badinski et al., J. Phys.: Condens. Matter 22, 074202 (2010)]. We obtain convergent, accurate confidence
intervals on the variance of the local energy of an electron gas and on the Hellmann-Feynman force on an atom
in the all-electron carbon dimer. In each of these cases the uncertainty on our estimator is 45% and 60 times
smaller, respectively, than the nominal (ill-defined) standard error.
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I. INTRODUCTION

Monte Carlo integration methods [1] allow the evaluation
of arbitrarily complicated high-dimensional integrals using
random, discrete samples of the integrand. Besides the need
to correct for serial correlation [2,3], the statistical analysis of
these random samples is usually straightforward, and the final
result of a Monte Carlo calculation is typically computed as a
standard mean with an accompanying standard error, defining
a confidence interval on the quantity of interest [4]. However,
there are problems for which the integrand diverges in such
manner as to render these confidence intervals invalid.

This is the case in continuum quantum Monte Carlo
(QMC) methods [5,6], a prominent family of tools for
studying correlated many-body systems. Given a trial wave
function �(R), the variational Monte Carlo (VMC) method
evaluates the expectation value of an observable Â by accumu-
lating its local value A(R) at random real-space configurations
of the particles in the system, R, distributed according to
|�(R)|2. The diffusion Monte Carlo (DMC) method samples
the lowest-energy wave function �(R) with the same nodal
structure as �(R) by stochastic projection according to the
imaginary-time Schrödinger equation, and yields more ac-
curate estimates of observables than VMC. The stochastic
integration employed by these methods allows using trial
wave functions that are not analytically integrable, providing
extraordinary flexibility and compactness in the description of
many-body correlations [7–9]. The VMC and DMC methods
are routinely used to solve electronic structure and quantum
chemistry problems [5,10,11].

The mismatch between the nodes of the trial wave function,
{R : �(R) = 0}, and those of the true ground-state wave
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function of the system are the main source of outliers in the
local energy distribution sampled in QMC, resulting in heavy
tails [12,13] that preclude the evaluation of meaningful confi-
dence intervals on the estimated variance of the local energy.
The local atomic force, comprising a Hellmann-Feynman
force [14] and a Pulay term [15,16], has heavy tails arising
both from the divergence of the electron-nucleus potential
energy in all-electron systems [17] and from the nodal error,
which prevent the evaluation of meaningful confidence inter-
vals on the estimated expectation value of the force.

Various methods have been proposed to circumvent the
statistical hurdles in the evaluation of atomic forces in QMC.
Modified estimators of the force satisfying a zero-variance
principle have been proposed [18–22] that substantially re-
duce the magnitude of the heavy tails in the local force
distribution. Force estimation methods based on the use of
pseudopotentials [23,24] can eliminate the problematic behav-
ior of the Hellmann-Feynman force [17], as does the fitting
approach proposed by Chiesa et al. [25]. However, some
of these methods involve approximations, and none of them
addresses the heavy tails in the local Pulay force distribution,
and therefore the total force remains affected by an infinite-
variance problem. The reweighted approach proposed by At-
taccalite and Sorella [26] does prevent the Pulay force from
diverging, but it involves modifying the sampling distribution
and is therefore not applicable in DMC.

Tail-index estimation methods [27–30] allow the exponent
governing the asymptotic behavior of heavy-tailed probability
distributions to be estimated from statistical samples. This
prior work, combined with knowledge of the exact asymptotic
form of the tails of the local energy [13] and local force [17]
distributions, provides us with the foundation to develop the
tail-regression estimator (TRE) for heavy-tailed distributions.
We demonstrate the application of this technique to VMC
and DMC data, for which we are able to obtain forces and
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local energy variances not affected by the infinite-variance
problem.

The rest of this paper is structured as follows. We review
the properties of the heavy tails of the local energy and
local force distributions in Sec. II. In Sec. III we discuss the
standard method for estimating an expectation value from
a statistical sample, and we propose our tail-regression es-
timator in Sec. IV. The application of our methodology is
illustrated in Sec. V using model distributions of known sta-
tistical properties. Finally, we present the results of applying
our method to the VMC energy of a homogeneous electron
gas and the VMC and DMC atomic force on an atom in
the all-electron C2 molecule in Secs. VI and VII, and our
conclusions are stated in Sec. VIII.

II. HEAVY TAILS IN QUANTUM MONTE CARLO

We explore the formal definition of expectation values in
QMC to allow the characterization of the resulting heavy-
tailed distributions. For simplicity, we restrict our analysis
to the VMC method until Sec. VII, in which we discuss the
application of our methodology to DMC data. Note that we
ignore serial correlation in this work.

Given a trial wave function �(R), a VMC calculation
evaluates the expectation value

〈A〉 =
∫

�∗(R)Â�(R) dR∫ |�(R)|2 dR
(1)

by generating electronic configurations {R} according to the
distribution

PR(R) = |�(R)|2∫ |�(R)|2 dR
(2)

and evaluating the local values A(R) = �−1(R)Â�(R) of
observable Â. The VMC expectation value can be recast as

〈A〉 =
∫ ∞

−∞
PA(A)A dA, (3)

where

PA(A) =
∫

∂�(A)

PR(R)

|∇RA(R)| ddN−1R, (4)

where d is the dimensionality of the system, N is the number
of electrons, and ∂�(A) is the (dN − 1)-dimensional region
of configuration space where A(R) = A.

The local value of some important observables diverges at
certain configurations, and it is often possible to characterize
the asymptotic behavior of PA(A) from knowledge of the
analytical form of �(R) near to these configurations. We
summarize the relevant properties of the local energy and the
local atomic force below.

A. Local energy

Consider the Hamiltonian of a molecular system in Hartree
atomic units (h̄ = me = |e| = 4πε0 = 1),

Ĥ (R) = −1

2

∑
i

∇2
i +

∑
i, j>i

1

ri j
+

∑
i,I

−ZI

riI
+

∑
I,J>I

ZI ZJ

rIJ
,

(5)

where ri j is the distance between the ith and jth electrons, riI

is the distance between the ith electron and the Ith nucleus,
rIJ is the distance between the Ith and Jth nuclei, and ZI is the
atomic number of the Ith nucleus.

The situations in which the local energy E (R) =
�−1(R)Ĥ (R)�(R) diverges were classified in detail by Trail
[13]. The divergence of the Coulomb potential at electron-
nucleus and electron-electron coalescence points, riI → 0 and
ri j → 0, respectively, can be neutralized by constraining the
trial wave functions to obey the Kato cusp conditions [31]
under which the kinetic energy exactly cancels the potential
energy at two-body coalescence points. The remaining diver-
gences of the local energy arise when �(R) → 0 but � is not
locally identical to an eigenstate of Ĥ , since Ĥ (R)�(R) can
be finite where �(R) is zero.

Mismatches between the nodes of �(R) and Ĥ (R)�(R)
are responsible for the asymptotic behavior [13]

PE (E ) = c0|E − E0|−4 + c1|E − E0|−5 + · · · , (6)

when |E | → ∞, where E0 is the exact ground state en-
ergy and {ci} are unknown coefficients. The coefficients of
even powers of |E − E0| in the left (E → −∞) and right
(E → +∞) tails of PE (E ) have equal coefficients, cL

2n = cR
2n,

while those of odd powers are of the same magnitude but of
opposite signs, cL

2n+1 = −cR
2n+1.

The expectation value of the energy itself can be evaluated
with standard estimators without problems, but these yield
unreliable confidence intervals on the variance of the local
energy. The variance of the local energy is an important quan-
tity since it is directly related to the quality of the trial wave
function, and is routinely used in wave function optimization
[32], as well as in the “variance extrapolation” technique that
attempts to estimate the zero-variance (exact wave function)
limit of expectation values [33]. We discuss the specific issues
with the variance of the local energy in Sec. III.

B. Local force

The force exerted by the electrons and the other nuclei on
the Ith nucleus of a system along the x direction is 〈F̂x,I〉 =
−d〈Ĥ〉/dxI , where xI is the x Cartesian coordinate of the Ith
nucleus. Dropping the I and x labels, the local force can be
expressed as

F (R) = FHFT(R) + FP(R), (7)

where the Hellmann-Feynman force is

FHFT(R) = −�−1(R)
∂Ĥ (R)

∂x
�(R)

=
∑

i

−ZI xiI

r3
iI

+
∑
J �=I

ZI ZJxIJ

r3
IJ

(8)

and the Pulay force is

FP(R) = −2�−1(R)[E (R) − 〈Ĥ〉]∂�(R)

∂x
. (9)

Optionally, a variance-reduction term which satisfies a zero-
variance principle [20],

FZV(R) = −�−1(R)[Ĥ (R) − E (R)]
∂�(R)

∂x
, (10)
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can be added to Eq. (7). This term does not alter the expecta-
tion value of the force but reduces the extent of the fluctuations
of the local Hellmann-Feynman force.

The local Hellmann-Feynman force diverges at electron-
nucleus coalescence points, and its distribution exhibits a
power-law tail of the form

PFHFT (F ) = c0|F − F0|−5/2 + c1|F − F0|−3 + · · · , (11)

when |F | → ∞, where F0 is a constant and {ci} are unknown
coefficients. The coefficients of the leading-order term on
the left and right tails are equal, cL

0 = cR
0 , and the rest are

asymmetric.
If the wave function satisfies the electron-nucleus Kato

cusp conditions [34] the zero-variance term exactly cancels
this divergence [21], but, like for the local energy, the mis-
match between the nodes of �(R) and Ĥ (R)�(R) is respon-
sible for the heavy tails in the distribution of the local values
of the Pulay and zero-variance terms, and hence of the total
force, which satisfies [17]

PF (F ) = c0|F − F0|−5/2 + c1|F − F0|−3 + · · · , (12)

when |F | → ∞, where F0 is a constant and {ci} are unknown
coefficients exhibiting no symmetry.

A somewhat different scenario arises if nondivergent
pseudopotentials are used in place of the electron-nucleus
Coulomb potential [35,36] and the local force estimation
is consequently adjusted [23,24]. In this case the local
Hellmann-Feynman force exhibits less problematic heavy
tails of leading order |F − F0|−4 [17], but since the Pulay term
is unaffected by the use of pseudopotentials the local total
force remains of the form of Eq. (12).

III. STANDARD ESTIMATION
OF AN EXPECTATION VALUE

The expectation value of an observable whose local value
A is distributed according to PA(A) is

〈A〉 =
∫ ∞

−∞
PA(A)A dA, (13)

and the variance of A is the expectation value of (A − 〈A〉)2,

Var[A] = σ 2 =
∫ ∞

−∞
PA(A)(A − 〈A〉)2 dA. (14)

The integrals in Eqs. (13) and (14) must be nondivergent for
the expectation value and variance of A to be well defined.
Therefore, probability distributions with asymptotic behavior
PA(A) ∼ |A|−μ as |A| → ∞ have no well-defined expectation
value or variance for μ � 2, and have a well-defined ex-
pectation value but no well-defined variance for 2 < μ � 3.
Note that a function with μ � 1 is not a valid probability
distribution as it cannot be normalized.

Let {Am}M
m=1 be a sample of M independent random vari-

ables identically distributed according to PA(A). The standard
estimator for Eq. (13) is the sample mean,

Ā = 1

M

M∑
m=1

Am, (15)

and the standard estimator for Eq. (14) is the sample variance,

S2 =
∑M

m=1(Am − Ā)2

M − 1
. (16)

The uncertainty on Ā is the standard error σĀ = S/
√

M. This
poses a problem for distributions of leading-order exponent
2 < μ � 3: despite having a well-defined expectation value
according to Eq. (13), its standard estimator has a divergent
uncertainty because it is defined in terms of the divergent
variance of Eq. (14).

In this regime PA(A) does not satisfy the conditions of
the central limit theorem that would guarantee the asymptotic
normality of confidence intervals built from the standard mean
and standard error [4]. Instead, PA(A) satisfies the law of large
numbers, which states that the standard mean does converge
to the expectation value at infinite sample size but confidence
intervals cannot be constructed using the standard error as
finite sample sizes.

A similar issue affects the estimator of the variance itself.
Even though the variance is well defined for μ > 3, the
variance on the estimator of the variance is

Var[S2] = 1

M

(
m4 − M − 3

M − 1
σ 4

)
, (17)

where m4 is the fourth-order central moment of PA(A), which
diverges for distributions of leading-order exponent μ � 5,
leading to a divergent uncertainty on the S2 estimator of the
variance.

IV. TAIL-REGRESSION ESTIMATOR

As outlined in the previous section, the uncertainty on the
standard estimator of a moment of a probability distribution
involves the estimator of a higher-order moment, which might
be divergent even though the moment of interest is well
defined. We therefore propose an alternative estimator of the
moment of a heavy-tailed probability distribution that exploits
knowledge of its analytical asymptotic form to yield well-
defined confidence intervals whenever the moment itself is
well defined.

Without loss of generality we focus on distributions with a
right heavy tail; the extension of our analysis to distributions
with left and both left and right heavy tails is straightforward.
In particular, we consider a probability distribution exhibiting
a right tail of asymptotic form

PA(A) =
∑

n

cn|A − A0|−μ−n	, (18)

when A → ∞, where the leading-order exponent μ and expo-
nent increment 	 > 0 are assumed to be known analytically,
as is the case for local energies, with μ = 4 and 	 = 1 [13],
and for local forces, with μ = 5/2 and 	 = 1/2 [37]. The
specific value of 	 is not critical for the correct description
of the asymptote by Eq. (18), and can be assumed to be unity,
but the accuracy of a truncated expansion strongly depends on
	. In other words, the bias incurred by choosing a suboptimal
value of 	 can be made arbitrarily small by using a larger
expansion. In Eq. (18) {cn} are unknown coefficients, and A0

is an unknown parameter which is assumed to lie close to the
“center” of the distribution.
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A. Validity of asymptote with approximate A0

First, we address the fact that A0 is an unknown nonlinear
parameter in Eq. (18) and will have to be approximated. Let
Ac be an approximation to A0 such that A0 = Ac + ε, where ε

is a small error. Assuming for simplicity that 	−1 is an integer
and expanding to first order in ε we find

PA(A) =
∑

n

cn|A − Ac − ε|−μ−n	

≈
∑

n

cn|A − Ac|−μ−n	

+ ε
∑

n

cn(μ + n	)|A − Ac|−μ−n	−1

=
∑

n

c′
n|A − Ac|−μ−n	 = P′

A(A), (19)

where

c′
n =

{
cn, n < 	−1,

cn + εcn−	−1 (μ + n	 − 1), n � 	−1.
(20)

The asymptotic expression P′
A(A) has the same form as PA(A),

albeit with modified coefficients c′
n for n � 	−1. We shall

therefore proceed with the derivation of our estimator using
P′

A(A) as the asymptote, dropping the primes from the notation
for clarity. This effectively amounts to replacing A0 with Ac,
which in practice we set to the sample median.

B. Estimator

In order to develop our estimator, we start by assuming that
there exists a threshold AR such that for A > AR the probabil-
ity distribution is accurately represented by an expansion of
order nR,

PA(A) =
nR∑

n=0

cn|A − Ac|−μ−n	, A > AR. (21)

The integral of Eq. (13) can be partitioned at AR into central
and right-tail contributions,

〈A〉 =
∫ AR

−∞
PA(A)A dA +

∫ ∞

AR

PA(A)A dA. (22)

Let {Am} be a sample of M independent random variables
identically distributed according to PA(A), {A(m)} the corre-
sponding order statistics, i.e., the reindexed version of {Am}
such that A(1) > A(2) > · · · > A(M ), MC the number of data in
the central region A < AR, and MR = M − MC the number of
data in the tail. We define the tail-regression estimator of 〈A〉
as

A = 1

M

∑
m>MR

A(m) +
nR∑

n=0

cn

∫ ∞

AR

|A − Ac|−μ−n	A dA. (23)

The integrals in Eq. (23) are nondivergent for μ > 2 and can
be evaluated analytically,∫ ∞

AR

|A − Ac|−μ−n	A dA

=
[ |AR − Ac|−μ−n	+2

μ + n	 − 2
+ Ac

|AR − Ac|−μ−n	+1

μ + n	 − 1

]
. (24)

The parameters {cn} in Eq. (23) can be obtained by regression
of {A(m)}MR

m=1 to Eq. (21). Since A is linear in {cn}, the
distribution of A follows that of {cn}. This implies that if
the regression coefficients are asymptotically normally dis-
tributed, A will also be asymptotically normally distributed.
We will address the distribution of regression coefficients in
Sec. IV D. We regard AR and nR as external parameters that
we deal with separately, see Sec. IV E, and do not contribute
to the uncertainty on A.

Analogously, we define the tail-regression estimators of the
norm,

W = MC

M
+

nR∑
n=0

cn

∫ ∞

AR

|A − Ac|−μ−n	 dA, (25)

and of the variance of the distribution,

V = 1

M − 1

∑
m>MR

(A(m) − A)2

+
nR∑

n=0

cn

∫ ∞

AR

|A − Ac|−μ−n	(A − A)2 dA. (26)

These integrals can likewise be evaluated analytically. Finally,
we note that the threshold AR must lie on the midpoint
between two adjacent sample points, 1

2 (A(MR ) + A(MR+1)), to
ensure that the central contributions have the correct weight
in Eqs. (23), (25), and (26).

We use the bootstrap method [38] to compute the uncer-
tainty on A. We generate nbs resamples of {Am} with replace-
ment, that is, the ith resample {A[i]

m } contains M elements from
{Am} drawn at random and uniformly, allowing repetitions.
For each resample we evaluate A[i], and we evaluate the
uncertainty on A as the standard deviation of the values of
{A[i]}. Estimates of other statistical parameters arising from
analysis of {Am}, including W and V , are also obtained in this
process. In our applications of the tail-regression estimator we
use nbs = 4096 bootstrap resamples, which provide a 1.1%
uncertainty on the estimated uncertainties assuming normal-
ity. The computational cost of this approach is proportional
to M × nbs.

C. Tail form in yx scale

The framework for our tail-regression procedure is inspired
by regression-based tail-index estimation methods [27,28],
discussed in the Appendix. First, note that the complementary
cumulative distribution function F̄A(A) associated with PA(A)
should be approximately equal to the sample quantiles qm,

F̄A(A) =
∫ ∞

A(m)
PA(A)dA ≈ qm, (27)

for which we use the symmetric form qm = m−1/2
M . Substitut-

ing Eq. (21) into Eq. (27) yields

nR∑
n=0

cn

μ + n	 − 1
|A(m) − Ac|−μ−n	+1 = qm, (28)
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FIG. 1. yx-scale plot of the left tail of M independent random
numbers identically distributed according to H4(A) for sample sizes
M = 104 (top), 105 (middle), and 106 (bottom). Shaded areas around
curves correspond to the 68.3% and 95.4% confidence intervals
obtained from the bootstrap. The short-dashed lines indicate the
analytical value of y(0), and the long-dashed lines are the first-
quantile lines, y = 1/2

M x−3, marking the region where the largest value
of A falls at each sample size.

which we rearrange as

qm|A(m) − Ac|μ−1 =
nR∑

n=0

cn

μ + n	 − 1
|A(m) − Ac|−n	. (29)

We define

ym = qm|A(m) − Ac|μ−1, xm = |A(m) − Ac|−	, (30)

which we refer to as “yx scale,” under which Eq. (29) reads

ym =
nR∑

n=0

cn

μ + n	 − 1
xn

m, (31)

that is, y is simply a polynomial in x. By construction, y
must be positive and tend to a finite value as x → 0, y(0) =
c0/(μ − 1), and the nth derivative of y(x) at x = 0 is likewise
proportional to cn.

It is useful to inspect the basic properties of the yx scale we
have introduced. For illustration purposes, let

Hμ(A) =
μ sin π

μ

2π

1

1 + |A|μ , (32)

which for μ > 2 is a normalized probability distribution
whose expectation value is zero and has the asymptote |A|−μ

as |A| → ∞. In Fig. 1 we show a yx-scale plot of the left
tail of M independent random numbers identically distributed
according to H4(A) at different sample sizes M, assuming

FIG. 2. yx-scale plot of the left tail of 106 independent random
numbers identically distributed according to H4(A) using the correct
leading-order tail exponent μ′ = μ = 4 and incorrect values μ′ = 3
and 5, which respectively go to zero and diverge as x → 0. Shaded
areas around curves correspond to the 68.3% and 95.4% confidence
intervals obtained from the bootstrap. The short-dashed line indicates
the analytical value of y(0).

	 = 1. The exact value y(0) = 0.1501 is shown as a short-
dashed line in each panel. The first quantile q1 = 1/(2M ),
corresponding to the largest value of A in the sample, gets
smaller as M increases, and, as follows from Eq. (30), the
extreme point (x1, y1) satisfies y1 = q1x(1−μ)/	

1 . This curve
determines how far left the plot extends, as shown by the long-
dashed line in each of the panels of Fig. 1. With increasing M
the plot is populated from right to left, gradually producing a
better resolved curve near x = 0.

In Fig. 2 we show yx plots of the M = 106 sample used in
Fig. 1 in which the yx scale is defined using the exponents
μ′ = 3, 4, and 5. If the true exponent is underestimated,
μ′ < μ, the curve goes to zero as x → 0, while overestimating
the exponent, μ′ > μ, yields a diverging curve at x → 0.
Attempting to use yx-scale plots to estimate μ is rudimentary
at best, since each possible value must be tested explicitly, and
care must be taken in interpreting the large statistical fluctu-
ations of y at small x. Tail-index estimation methods [28,29]
offer a robust alternative; the regression method of Ref. [28]
produces a reasonable value of μ = 3.94(2) from the data
plotted in Fig. 2. Note that the tail-regression estimator relies
on analytical knowledge of μ rather than on its estimation
from the sample.

D. Tail regression and weights

We now focus on the regression procedure to ensure a
reliable estimation of the fit parameters. It is apparent from
Fig. 1 that the distribution of y values at small x about
the exact y(0) is skewed towards large y, so adequate least-
squares weights are needed to ensure the faithfulness of the
resulting fit.

Let rm = wm[ym − y(xm)] be the least-square residuals,
where wm is the least-squares weight applied to the mth
point, and χ2 = 1

M−nR−1

∑M
m=1 r2

m be the least-squares func-
tion. Minimizing χ2 with respect to the fit parameters {cn}
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yields the linear system of equations T c = b, where

(T )pq = 1

M

M∑
m=1

wmxp+q
m ,

(b)p = 1

M

M∑
m=1

wmymxp
m,

(c)p = cp, (33)

and indices p and q run between zero and nR. The parameter
vector is thus

c = T −1b = 1

det(T )
adj(T )b, (34)

where adj(T ) is the adjugate matrix of T (i.e., the transpose
of its cofactor matrix) and det(T ) is its determinant.

The parameters (c)p will be asymptotically normally dis-
tributed if (T )pq, (b)p, and det(T ) are themselves asymp-
totically normally distributed and det(T ) is nonzero, since
Eq. (34) involves sums and multiplications, which preserve
asymptotic normality, and a division, which also preserves
asymptotic normality if the denominator is strictly nonzero.

We consider weights of the form

wm = |A(m) − Ac|−γ (μ−1), (35)

where γ is a positive constant. Since xm is a negative power of
|A(m) − Ac|, all elements of T and det(T ) are asymptotically
normally distributed, but the elements of b need not be. We
focus on the m = 1 contribution to (b)0, which is the least
likely to exhibit asymptotic normality,

w1y1 = q1|A(1) − Ac|(μ−1)(1−γ ). (36)

Noting that w1 = qγ

1 y−γ

1 and that the exact asymptotic value
of y1 as M → ∞ is by construction y(0) = c0/(μ − 1), the
asymptotic limit of w1y1 is

ξ = qγ

1

[
c0

μ − 1

]1−γ

, (37)

where q1 = 1/(2M ) encodes the sample-size dependence.
We now investigate the distribution of values of w1y1 about

ξ . The probability that |A(1) − Ac| is bounded from above by α

is the probability that the M points in the sample are bounded
from above by Ac + α, that is,

Prob(|A(1) − Ac| � α) = 1 − F̄|A(1)−Ac|(α)

= [1 − F̄A(Ac + α)]M

≈ (1 − c0α
−μ+1)M, (38)

to leading order for large α. Differentiating with respect to α

yields the probability distribution of the extreme value,

P|A(1)−Ac|(α) = Mc0(μ − 1)α−μ(1 − c0α
−μ+1)M−1, (39)

and by a change of variable,

Pw1y1/ξ (β ) = μ − 1

2(1 − γ )
β

− 2−γ

1−γ

[
1 − μ − 1

2M
β

− 1
1−γ

]M−1

, (40)

assuming γ �= 1. At large β,

Pw1y1/ξ (β ) ∼ β
− 2−γ

1−γ , (41)
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FIG. 3. Probability distribution of the values of w1y1/ξ , Eq. (40),
for various values of γ , using μ = 4 and M = 106.

which is a power-law tail for γ < 1, yielding an undefined
expectation value for γ � 1/2. Unweighted fits (γ = 0) are
therefore numerically ill-conditioned since the residuals are
themselves heavy tailed ∼β−2 regardless of the value of μ.
Fit weights with γ > 1/2 must therefore be used.

In Fig. 3 we plot Pw1y1/ξ (β ) for various values of γ . Note
that the curve for γ = 0 describes the distribution of values
of y in Fig. 1 relative to the analytical value of y(0) along
the constant-q lines. The plots for γ = 0.8 and 1.2 reveal
that, while not ill conditioned, the significant skewness of
the distributions makes the first moment of Pw1y1/ξ (β ) differ
significantly from the asymptotic expectation value of 1 in
these cases. For γ = 1, w1y1 = qγ

1 is y1 independent, and
the distribution is therefore a delta function peaked at the
asymptotic expectation value, as shown in Fig. 3. We therefore
use γ = 1 for our fit weights.

We empirically find it advantageous to include a qm-
dependent factor in the fit weights so as to ensure the continu-
ity of the fit to the probability distribution near AR. We choose
this factor to be the weights corresponding to the formulation
of the Hill estimator of the first-order tail index [27] as a
regression estimator [28]; see Eq. (A3) in the Appendix.
Therefore, our full fit weights are

wm =
(

ln
qMR+1

qm

)−1

|A(m) − Ac|−μ+1. (42)

E. Selecting nR and AR

The tail-regression estimator depends parametrically on the
expansion order nR and threshold AR. In our tests we try
several thresholds and converge the fit with respect to the
expansion order at each of them. We then choose the value
of AR which minimizes the uncertainty on either V , if well
defined, or on A.

We choose the expansion order heuristically by finding
plateaus in W , A, V , and χ2 as a function of nR, and selecting
the smallest expansion order at which these four functions
have converged. To ensure correctness, we further require that
W ≈ 1 and y(x) > 0 within the fit range, and we restrict nR �
1/	 in order to “absorb” the error incurred by approximating
A0 by Ac, as explained in Sec. IV A.
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Note that we do not set AR directly, but instead set qR =
(MR − 1/2)/M, as keeping the number of sample points in
each partition fixed across bootstrap resamples eliminates the
variation of the central contribution to W , which is statis-
tically advantageous. We choose our values of qR using a
grid of equally spaced values of − ln qR. We pick nR and AR

using nbs = 256, and evaluate the final result separately with
nbs = 4096 to avoid selection bias. We illustrate the procedure
for choosing nR and AR in Sec. V A.

F. Two-tailed distributions, symmetry, and constraints

The tail-regression estimator described so far can be mod-
ified trivially for distributions with left and right heavy tails.
For simplicity we use the same expansion orders and thresh-
olds on both tails, nR = nL and MR = ML.

In some important cases, including the local energy and
local atomic force in VMC [13,17], the leading-order coef-
ficients of the left and right tails, cL

0 and cR
0 , are equal. This

can be exploited by unifying the regression step for both tails
and imposing the constraint cL

0 = cR
0 = c0. The leading order

contribution to A from the tails is

c0

∫ 2Ac−AL

AR

|A − Ac|−μA dA. (43)

The exact cancellation of part of the left- and right-tail con-
tributions to A should provide a substantial reduction to its
uncertainty. The effect on the uncertainty on V of enforcing
symmetry can be expected to be marginal since both tails
contribute positively in this case.

As implied by Eq. (20), due to the approximation A0 ≈ Ac

constraints must not be applied to parameters cn with n �
1/	. For example, even if a distribution with 	 = 1 is known
to analytically satisfy cL

1 = cR
1 , the values of the c1 parameters

on each tail must be allowed to differ to account for the error
in Ac. In the tests carried out in our present work we use
at most one constraint, and we use the labels “TRE” and
“TRE(1)” in the plots in Secs. V, VI, and VII to distinguish
the unconstrained and constrained estimators.

The use of constraints allows for the interesting possibil-
ity of estimating the expectation value of distributions with
1 < μ � 2 for which 〈A〉 is formally divergent. In this case we
redefine the expectation value as the Cauchy principal value of
the integral in Eq. (13) with respect to A0,

〈A〉 = lim
a→∞

∫ A0+a

A0−a
PA(A)A dA, (44)

ensuring that the divergent leading-order contributions cancel
out due to symmetry. We present an example of this in
Sec. V C.

V. APPLICATION TO MODEL DISTRIBUTIONS

In this section we apply the tail-regression estimator to
synthetic data. We construct the seed model distributions as
linear combinations of Hμ(A), defined in Eq. (32), to study
various cases of interest.

FIG. 4. Application of the tail-regression procedure to a sam-
ple of 106 random variables distributed according to PA(A) =
1
2 H3.1(A) + 1

2 H4.1(A). The top panel shows the estimated probability
distribution and the lower panels show yx plots for each tail. Fits are
shown as thick lines in the three panels and the analytical asymptotic
form of the tail is shown as a dashed line in each of the bottom panels.
68.3% and 95.4% confidence intervals obtained from the bootstrap
are shown as shaded areas.

A. Distribution with undefined fourth moment

Distributions with 3 < μ � 5 have convergent standard
estimators for the expectation value and variance, but the
uncertainty on the standard estimator of the variance is di-
vergent. To exemplify this case we choose to analyze PA(A) =
1
2 H3.1(A) + 1

2 H4.1(A), which has a leading-order tail exponent
of μ = 3.1, close to the lower limit of 3, and 	 = 1. The ana-
lytical variance of this distribution is σ 2 = 4.6586, and PA(A)
satisfies the analytical limit y ∼ 0.0997 + 0.0730x as x → 0.

The regression of the tails of this model distribution is
demonstrated in Fig. 4 using a sample of 106 random vari-
ables. The top panel shows the probability distribution esti-
mated by convolving the data with a variable-width Gaussian
kernel and the lower panels show yx plots of the data. The
tail fits are shown in the three panels as thick lines, for which
we use nR = 3 and − ln qR = 2.25, and the constraint cL

0 = cR
0

has been imposed.
The process of selecting nR at fixed threshold is illustrated

in Fig. 5, where W , A, V , and χ2 are plotted as a function of
nR. These functions converge relatively quickly with nR, but
for large expansion orders overfitting becomes an issue. This
can be easily spotted by the significant jump in the uncertainty
on the estimators, which in Fig. 5 occurs at nR = 7. In this
case we consider nR = 3 to be the optimal expansion order.

In Fig. 6 we plot the uncertainty on V as a function
of the threshold for each considered expansion order. The
uncertainty on V is largely monotonic in nR at fixed threshold
and in − ln qR at fixed expansion order. Figure 6 shows that
the optimal values of the expansion order and threshold are
nR = 3 and − ln qR = 2.25, as used in Fig. 4.
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FIG. 5. Tail-regression estimator of the zeroth, first, and second
moment of PA(A) = 1

2 H3.1(A) + 1
2 H4.1(A) and χ 2 as a function of

expansion order obtained using a sample of 106 random numbers and
a threshold of − ln qR = 2.25. The “optimal” nR = 3 is that at which
all of these functions reach their respective plateaus.

In Table I we report the results obtained from the standard
and tail-regression estimators of 〈A〉 and σ 2 for sample sizes
ranging from 103 to 108, which we plot in Figs. 7 and 8.

For the tail-regression estimator we report results both
without the use of constraints and imposing cL

0 = cR
0 . The

optimal values of nR and − ln qR are not significantly sample-
size dependent; we find that nR increases when − ln qR de-
creases and vice versa, as could be expected.

The estimators of 〈A〉 are within uncertainty of the exact
value of zero at all sample sizes, but A has an uncertainty
about 25% smaller than Ā. The uncertainty on the standard
estimator of the variance S2 is nonmonotonic, as expected,
and in this case confidence interval sizes are severely under-
estimated, causing the false impression that S2 converges to

0

0.5

1.0

0 2 4 6 8

U
nc
er
ta
in
ty
on

V

ln qR

6 54
3 2 1

FIG. 6. Uncertainty on the tail-regression estimator of σ 2 ob-
tained from 106 random variables distributed according to PA(A) =
1
2 H3.1(A) + 1

2 H4.1(A) as a function of threshold − ln qR. Each curve
corresponds to a different expansion order nR, as labeled. Combina-
tions of − ln qR and nR that fail to satisfy our correctness criteria are
not shown, and narrow fails are shown as crossed-out points. The
“optimal” choice of threshold and expansion order, marked with a
circle, is that which minimizes the uncertainty on V , corresponding
to − ln qR = 2.25 and nR = 3 in this case.

an incorrect value with increasing M. By contrast, V remains
within uncertainty of σ 2 at all M, and its uncertainty decreases
monotonically with sample size. The unconstrained and con-
strained estimators give indistinguishable results in this case,
and the uncertainty on both seems to asymptotically decay as
M−1/2.

B. Distribution with undefined second moment

Distributions with 2 < μ � 3 have a divergent variance,
and the standard estimator of 〈A〉 has an undefined uncertainty.
We exemplify this case with model distribution PA(A) =
1
2 H2.1(A) + 1

2 H3.1(A), which has μ = 2.1, close to the lower
limit of 2, and 	 = 1.

The standard and tail-regression estimators of 〈A〉 are given
in Table II and plotted in Fig. 9 as a function of sample
size M. As expected, the standard estimator Ā hovers around
the exact value 〈A〉 = 0 but its uncertainty does not decrease
uniformly with sample size. The tail-regression estimator

TABLE I. Standard and tail-regression estimators of 〈A〉 and σ 2 for model distribution PA(A) = 1
2 H3.1(A) + 1

2 H4.1(A) obtained from random
samples of various sizes M. The optimal expansion orders nR and thresholds − ln qR used for the tail-regression estimator in each case are also
shown.

Standard TRE (unconstrained) TRE (one constraint)

M Ā S2 nR − ln qR A V nR − ln qR A V

103 0.001(39) 1.55(28) 1 3.25 0.006(38) 3.8(17) 5 1.00 0.001(34) 3.6(20)
104 −0.000(18) 3.3(13) 4 1.25 −0.000(14) 2.71(73) 3 1.50 0.001(11) 3.18(65)
105 0.0009(50) 2.51(31) 4 1.50 0.0009(48) 4.54(33) 4 1.50 0.0057(35) 4.55(33)
106 −0.0017(16) 2.63(19) 3 2.25 −0.0014(15) 4.57(12) 3 2.25 −0.0011(11) 4.56(12)
107 −0.00022(52) 2.69(12) 2 3.75 −0.00017(46) 4.585(41) 3 2.75 −0.00032(37) 4.608(49)
108 0.00018(16) 2.689(66) 3 2.75 0.00016(15) 4.661(15) 3 2.75 0.00019(12) 4.662(15)

Exact 0.0 4.6586 0.0 4.6586 0.0 4.6586
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FIG. 7. Convergence of (a) the estimators of 〈A〉 and (b) their
uncertainties as a function of sample size M for model distribution
PA(A) = 1

2 H3.1(A) + 1
2 H4.1(A). The exact value 〈A〉 = 0 is marked

with a dashed line in (a), and dashed lines proportional to M−1/2

passing through the last point of each of the tail-regression estimator
curves are shown in (b) as guides to the eye. 68.3% confidence
intervals are shown as shaded areas.

provides a monotonically decreasing uncertainty with an
approximate asymptotic decay proportional to M−1/2, and
imposing the constraint cL

0 = cR
0 yields an order of magnitude

smaller uncertainties than the unconstrained estimator does.

C. Symmetric distribution with undefined first moment

Distributions with 1 < μ � 2 have a divergent expectation
value, and the standard estimator of 〈A〉 is undefined. How-
ever, if the tails of the distribution are symmetric to leading
order it is possible to redefine 〈A〉 as a Cauchy principal value
which can be estimated; see Eq. (44). We exemplify this case
with model distribution PA(A) = 1

2 H1.1(A) + 1
2 H2.1(A), which

has μ = 1.1, close to the lower limit of 1, and 	 = 1.
Results using the constrained tail-regression estimator are

given in Table III and plotted in Fig. 10. We find that A is
within uncertainty of the exact value of zero at all sample
sizes, and again the uncertainty on A appears to be asymp-
totically proportional to M−1/2. In Table III we also give the
order of magnitude of the computed sample mean to highlight
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FIG. 8. Convergence of (a) the estimators of σ 2 and (b) their
uncertainties as a function of sample size M for model distribu-
tion PA(A) = 1

2 H3.1(A) + 1
2 H4.1(A). The exact value σ 2 = 4.6586 is

marked with a dashed line in (a), and dashed lines proportional to
M−1/2 passing through the last point of each of the tail-regression
estimator curves are shown in (b) as guides to the eye. 68.3%
confidence intervals are shown as shaded areas.

that this example is absolutely intractable with the standard
estimator.

VI. APPLICATION TO VARIATIONAL QUANTUM
MONTE CARLO DATA

In this section we explore the performance of the tail-
regression estimator on data obtained from VMC calculations.
Local values of observables generated using the VMC method
are usually affected by serial correlation due to the use of
the Metropolis algorithm to sample configuration space. In
our VMC calculations we perform up to 400 Metropolis
steps between consecutive evaluations of the local values of
the target observables so that these can be considered to be
independent random variables, and we have verified that the
resulting data sets exhibit negligible serial correlation.

A. Energy of the homogeneous electron gas

The homogeneous electron gas is an ideal test bed for
methodological developments in QMC. We perform VMC

TABLE II. Standard and tail-regression estimators of 〈A〉 for model distribution PA(A) = 1
2 H2.1(A) + 1

2 H3.1(A) obtained from random
samples of various sizes M. The optimal expansion orders nR and thresholds − ln qR used for the tail-regression estimator in each case are also
shown.

Standard TRE (unconstrained) TRE (one constraint)

M Ā nR − ln qR A nR − ln qR A

103 −6.4(67) 1 1.30 −0.12(29) 1 1.60 −0.026(43)
104 −0.69(69) 5 1.00 −0.11(20) 4 1.00 −0.005(18)
105 0.18(19) 5 1.10 0.005(72) 6 1.00 −0.0131(76)
106 −0.21(17) 7 1.00 −0.007(26) 4 1.40 −0.0021(25)
107 −0.115(66) 5 1.30 0.0084(84) 4 1.50 0.00073(83)
108 −0.102(66) 4 1.70 0.0028(28) 4 1.70 −0.00003(29)

Exact 0.0 0.0 0.0
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FIG. 9. Convergence of (a) the estimators of 〈A〉 and (b) their
uncertainties as a function of sample size M for model distribution
PA(A) = 1

2 H2.1(A) + 1
2 H3.1(A). The exact value 〈A〉 = 0 is marked

with a dashed line in (a) and dashed lines proportional to M−1/2

passing through the last point of each of the tail-regression estimator
curves are shown in (b) as guides to the eye. 68.3% confidence
intervals are shown as shaded areas.

calculations on the paramagnetic 54-electron gas in a cubic
simulation cell at density rs = 1 using the Slater-Jastrow
(SJ) wave function, consisting of the product of up- and
down-spin Slater determinants of the plane waves with the
smallest momenta compatible with the periodicity of the
simulation cell multiplied by a Jastrow correlation factor,
�SJ(R) = eJ (R)D↑(R↑)D↓(R↓). Our Jastrow factor consists
of an isotropic electron-electron term of the Drummond-
Towler-Needs form [7,39]. We use the CASINO code [40]
to generate samples of local energies whose distribution, as
detailed in Sec. II A, has left and right heavy tails of prin-
cipal exponent μ = 4, 	 = 1, and equal left- and right-tail
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FIG. 10. Convergence of (a) the constrained tail-regression es-
timator of 〈A〉 and (b) its uncertainty as a function of sample size
M for model distribution PA(A) = 1

2 H1.1(A) + 1
2 H2.1(A). The exact

value 〈A〉 = 0 is marked with a dashed line in (a) and a dashed
line proportional to M−1/2 passing through the last point of the
tail-regression estimator curve is shown in (b) as a guide to the eye.
68.3% confidence intervals are shown as shaded areas.

TABLE III. Standard and tail-regression estimators of 〈A〉 for
model distribution PA(A) = 1

2 H1.1(A) + 1
2 H2.1(A) obtained from ran-

dom samples of various sizes M. The optimal expansion orders nR

and thresholds − ln qR used for the tail-regression estimator in each
case are also shown.

Standard TRE (one constraint)

M |Ā| nR − ln qR A

103 ∼1030 1 1.15 −0.42(55)
104 ∼1028 2 0.95 0.01(18)
105 ∼1039 2 1.00 0.046(68)
106 ∼1048 3 1.10 −0.028(54)
107 ∼1059 6 0.85 −0.019(20)
108 ∼1079 5 0.95 −0.0062(76)

Exact 0.0 0.0

leading-order coefficients [13]. As explained in Sec. IV F,
constraints involving cn with n � 1 cannot be applied since
A0 is being approximated by Ac.

In Fig. 11 we plot the probability distribution estimated
from 106 local energies, yx plots of the tails, and the corre-
sponding tail fits. The standard and tail-regression estimators
of 〈A〉 and σ 2, given in Table IV and plotted in Fig. 12 as
a function of sample size, are in good agreement with each
other. The A estimator offers no advantage over Ā in this
case, but the uncertainty on S2 exhibits nonmonotonicity as
a function of M, while that in V is monotonic, significantly
smoother, and up to 45% smaller. Note that even though the
nominal standard confidence interval on S2 only shows minor
signs of ill behavior in this example, it is formally undefined,

FIG. 11. Application of the tail-regression procedure to a sample
of 106 VMC local energies for the 54-electron gas at rs = 1 using
the SJ wave function. The top panel shows the estimated probability
distribution and the lower panels show yx plots of both tails. Fits are
shown as thick lines in the three panels. 68.3% and 95.4% confidence
intervals obtained from the bootstrap are shown as shaded areas.
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TABLE IV. Standard and tail-regression estimators of 〈A〉 and σ 2 for the VMC energy of the 54-electron gas at rs = 1 using the SJ
wave function obtained from local energy samples of various sizes M. The optimal expansion order nR and threshold − ln qR used for the
tail-regression estimator in each case are also shown.

Standard TRE (unconstrained) TRE (one constraint)

M Ā S2 nR − ln qR A V nR − ln qR A V

103 0.53381(74) 0.000542(34) 2 4.25 0.5339(12) 0.00090(30) 2 4.50 0.53342(96) 0.00095(17)
104 0.53314(24) 0.000581(13) 2 6.50 0.53309(26) 0.000646(40) 1 7.75 0.53310(26) 0.000627(28)
105 0.532868(76) 0.0005738(39) 1 8.00 0.532863(78) 0.0005843(61) 1 8.25 0.532868(76) 0.0005839(57)
106 0.532820(24) 0.0005804(44) 2 7.25 0.532817(24) 0.0005806(24) 2 7.25 0.532815(24) 0.0005805(24)
107 0.5328407(76) 0.0005761(15) 2 8.00 0.5328396(76) 0.00057618(82) 3 8.25 0.5328396(76) 0.0005763(12)
108 0.5328500(24) 0.00057442(31) 2 8.25 0.5328500(24) 0.00057545(25) 2 8.25 0.5328499(24) 0.00057545(24)

while the tail-regression estimator produces valid confidence
intervals. This is of potential practical importance in wave
function optimization and variance extrapolation.

B. Atomic force in the C2 molecule

We turn our attention to the atomic force in the all-electron
carbon dimer. The C2 molecule is of particular interest due
to its strong multireference character that makes the single-
determinantal wave function incur a large nodal error, which
ought to provide relatively strong heavy tails in the local Pulay
and zero-variance force distributions.

We generate Hartree-Fock orbitals for the all-electron car-
bon dimer at an off-equilibrium (compressed) bond length of
rCC = 2.0 a.u. (the experimental equilibrium bond length of
C2 is 2.3481 a.u. [41]) using the relatively modest cc-pvdz
basis set [42,43] with the MOLPRO code [44]. We combine
these orbitals, modified to satisfy the Kato cusp conditions
at electron-nucleus coalescence points [34], with a Jastrow
factor containing electron-electron, electron-nucleus, and
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FIG. 12. Convergence of (a) the estimators of σ 2 and (b) their
uncertainties as a function of sample size M for the VMC local
energy of a 54-electron gas at rs = 1 using the SJ wave function.
Our best estimate of the value of the variance of the local energy for
this system, σ 2 ≈ 0.00057545(24) a.u., is marked with a dashed line
in (a) and dashed lines proportional to M−1/2 passing through the
last point of each of the tail-regression estimator curves are shown
in (b) as guides to the eye. 68.3% confidence intervals are shown as
shaded areas.

electron-electron-nucleus terms of the Drummond-Towler-
Needs form [7,39], to form the trial wave function for VMC.
Throughout the VMC run, performed with the CASINO code
[40], we collect local values of the components of the force
on one of the carbon atoms along the molecular axis in the
direction away from the other atom.

We first focus on the Pulay force which, as discussed in
Sec. II B, follows a heavy tailed distribution with μ = 5/2 and
	 = 1/2 due to the nodal error in the trial wave function. In
Fig. 13 we show yx plots of the tails of the local Pulay force
at sample sizes M = 106, 107, and 108, along with plots of the
corresponding optimal fits. Despite having chosen a system
known to exhibit a large nodal error, we find that the leading-
order heavy tails are relatively weak, and that it takes sample
sizes of M � 107 to resolve the nonzero value of y(0). As a
result, the uncertainty on the standard estimator of 〈A〉 is likely
to only exhibit nonconvergent behavior at large sample sizes.

FIG. 13. yx plots of the left (left) and right (right) tails of the
VMC local Pulay force on a carbon atom along the molecular axis
of the C2 molecule at rCC = 2 a.u. at sample sizes M = 106 (top),
107 (middle), and 108 (bottom). Fits are shown as thick lines in the
three panels. 68.3% and 95.4% confidence intervals obtained from
the bootstrap are shown as shaded areas.
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FIG. 14. Convergence of (a) the estimators of 〈A〉 and (b) their
uncertainties as a function of sample size M for the VMC local Pulay
force on a carbon atom along the molecular axis of the C2 molecule
at rCC = 2 a.u. The best value of the Pulay force of 1.1643(35) a.u.
is marked with a dashed line in (a) and a dashed line proportional to
M−1/2 passing through the last point of the tail-regression estimator
curve is shown in (b) as a guide to the eye. 68.3% confidence
intervals are shown as shaded areas.

We plot the convergence of the standard and tail-regression
estimators of 〈FP〉 in Fig. 14. As expected, the standard
estimator Ā seems well behaved at small sample sizes, but at
M = 108 the standard error presents a substantial nonmono-
tonic jump. The uncertainty obtained with the tail-regression
estimator remains smooth and monotonic, and is ultimately
smaller than that of the standard estimator at M = 108.

We find that the local zero-variance corrected Hellmann-
Feynman force, FHFT + FZV, and the local zero-variance cor-
rected total force, FHFT + FP + FZV, exhibit similarly weak
leading-order tails, and the uncertainties in the standard and
tail-regression estimators follow convergence patterns similar
to those depicted in Fig. 14.

Without the zero-variance correction, the heavy tails affect-
ing the distribution of the local Hellmann-Feynman force are
very strong. As detailed in Sec. II B, these tails are caused by
the presence of all-electron nuclei and the left and right tails
have equal leading-order coefficients. In Fig. 15 we plot the

FIG. 15. Application of the tail-regression procedure to a sample
of 108 VMC local Hellmann-Feynman forces on a carbon atom along
the molecular axis of the C2 molecule at rCC = 2 a.u. The top panel
shows the estimated probability distribution and the lower panels
show yx plots of both tails. Fits are shown as thick lines in the
three panels. 68.3% and 95.4% confidence intervals obtained from
the bootstrap are shown as shaded areas.

probability distribution of FHFT for the off-equilibrium carbon
dimer estimated from 108 sample points and the correspond-
ing yx plots of the left and right tails of the distribution. The
value of y(0) is very large relative to the rest of the function,
and this is the only case among those we have considered
in which the slope of the yx plot is markedly negative at the
origin. Indeed, it can be shown that the electron-nucleus cusp
condition causes the c1 coefficient in the asymptotic form
of FHFT to be approximately proportional to c0 with a large,
negative prefactor.

The standard and tail-regression estimators of the expec-
tation value of the Hellmann-Feynman force are given in
Table V and plotted in Fig. 16 as a function of sample
size. The uncertainty on the standard estimator is clearly
nonmonotonic, while that in the tail-regression estimator is

TABLE V. Standard and tail-regression estimators of 〈A〉 for the VMC Hellmann-Feynman force on a carbon atom along the molecular
axis of the C2 molecule at rCC = 2 a.u., obtained from local force samples of various sizes M. The optimal expansion orders nR and thresholds
− ln qR used for the tail-regression estimator in each case are also shown. The “best” value is provided for reference and corresponds to the
tail-regression estimator of 〈FHFT + FZV〉 using 108 sample points.

Standard TRE (unconstrained) TRE (one constraint)

M Ā nR − ln qR A nR − ln qR A

103 −26(56) 4 0.90 −18(24) 3 0.90 0.7(78)
104 −29(22) 5 0.80 −3.3(88) 4 0.90 −0.7(33)
105 −2.1(80) 5 0.80 0.3(28) 5 0.80 0.3(10)
106 −17.0(73) 4 1.00 −0.1(10) 4 1.00 −0.34(40)
107 −8.0(79) 3 1.30 −0.43(34) 3 1.30 −0.50(13)
108 −0.3(15) 3 1.40 −0.51(11) 3 1.40 −0.567(43)

Best −0.5770(29) −0.5770(29) −0.5770(29)
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FIG. 16. Convergence of (a) the estimators of 〈A〉 and (b) their
uncertainties as a function of sample size M for the VMC local
Hellmann-Feynman force on a carbon atom along the molecular axis
of the C2 molecule at rCC = 2 a.u. The best value of the Hellmann-
Feynman force of −0.5758(29) a.u. is marked with a dashed line
in (a) and dashed lines proportional to M−1/2 passing through the
last point of each of the tail-regression estimator curves are shown
in (b) as guides to the eye. 68.3% confidence intervals are shown as
shaded areas.

smooth and appears to present an M−1/2 asymptotic decay.
The uncertainty on the tail-regression estimator is up to 60
times smaller than the nominal uncertainty on the standard
estimator, of which a factor of 2.5 is thanks to imposing the
analytical constraint cL

0 = cR
0 .

The results obtained for the different force components at
the largest considered sample size of M = 108 are given in
Table VI. The nominal uncertainty on the standard estimator
of 〈FHFT + FZV〉 is an order of magnitude smaller than that
in the constrained tail-regression estimator of 〈FHFT〉, and
in this sense the tail-regression estimator is less effective
than the zero-variance correction. This is however somewhat
misleading since the uncertainty on the standard estimator
remains formally ill defined, while the tail-regression estima-
tor is asymptotically normally distributed. In any case, the
tail-regression estimator of 〈FHFT + FZV〉 yields a 30% lower
uncertainty than the standard estimator, which is equivalent
to a factor-of-two reduction in the number of sample points
required to achieve a target uncertainty, showing that the
combination of variance-reduction techniques with the tail-
regression estimator is advantageous. Similarly, the nominal
uncertainties on the Pulay force and on the zero-variance
corrected total force are significantly reduced by replacing the
ill-defined standard estimator with the tail-regression estima-
tor at this sample size.

VII. APPLICATION TO DIFFUSION QUANTUM
MONTE CARLO DATA

At each postequilibration step of a DMC calculation,
an ensemble of walkers represents the mixed distribution
�(R)�(R), where �(R) is the DMC wave function and
�(R) is the trial wave function. These walkers carry variable

TABLE VI. Standard and tail-regression estimators of 〈A〉 for
the VMC local Hellmann-Feynman force, zero-variance corrected
Hellmann-Feynman force, Pulay force, and zero-variance corrected
total force on a carbon atom along the molecular axis of the C2

molecule at rCC = 2 a.u., obtained from 108 sample points.

Standard TRE TRE(1)

〈FHFT〉 −0.3(15) −0.51(11) −0.567(43)
〈FHFT + FZV〉 −0.5731(42) −0.5770(29)
〈FP〉 1.1553(78) 1.1643(35)
〈FHFT + FZV + FP〉 0.5822(45) 0.5860(35)

weights which in turn trigger death and branching events. The
local values �−1(R)Â�(R) of an observable Â are evaluated
for each walker at each step, and the weighted average of the
resulting sample yields the mixed estimator of the expectation
value,

〈A〉 =
∫

�(R)Â�(R) dR∫
�(R)�(R) dR

. (45)

Note that one in principle seeks the pure estimator,

〈A〉 =
∫

�(R)Â�(R) dR∫
�(R)�(R) dR

, (46)

but the mixed estimator is simpler to obtain; it is equal
to the pure estimator if Â commutes with the Hamiltonian
of the system, and for other observables there are ways of
approximating pure estimators using mixed estimators [6]. We
will restrict our discussion and tests to mixed estimators.

DMC samples differ from VMC samples in important
ways. The formalism presented in Sec. IV can be trivially
altered to accommodate weights, simply by replacing the
sample quantiles qm = m−1/2

M with

qm =
∑

l:Al�Am
pl − pm/2∑
l pl

, (47)

where pm is the unnormalized weight of the mth sample point.
Walker branching events involve walkers being duplicated

and its copies then evolving independently. This causes a
complex pattern of serial correlation which cannot be elim-
inated entirely by leaving several steps between consecutive
evaluations of the local values of observables, as we have done
in our VMC calculations. While the presence of any form of
serial correlation violates our assumption that samples consist
of independent and identically distributed random variables,
we expect this effect to be small and ignore it in our DMC
tests.

The gradient of the DMC wave function �(R) is in general
discontinuous at the nodes [45,46]. This alters the relative
presence of walkers on either side of each nodal point, causing
observables whose local values diverge at the nodes, such as
the energy, to exhibit fully asymmetric heavy tails. The local
Hellmann-Feynmann component of the force is not affected
by this, since its singularities do not occur at the nodes
of the trial wave function, so its DMC distribution remains
symmetric to leading order as it is in VMC.
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TABLE VII. Standard and tail-regression estimators of 〈A〉 for the mixed DMC Hellmann-Feynman force on a carbon atom along the
molecular axis of the C2 molecule at rCC = 2 a.u., obtained from local force samples of various sizes M. The optimal expansion orders nR and
thresholds − ln qR used for the tail-regression estimator in each case are also shown.

Standard TRE (unconstrained) TRE (one constraint)

M Ā nR − ln qR A nR − ln qR A

103 9(35) 3 0.90 −14(22) 3 1.10 −3(11)
104 −29(28) 5 0.80 −9.5(87) 4 0.90 −3.3(33)
105 4.2(83) 4 0.90 −0.3(28) 4 0.90 −0.6(10)
106 6.1(38) 3 1.40 0.9(11) 3 1.40 0.53(45)
107 −9(12) 3 1.30 1.08(34) 4 1.40 0.61(18)
108 2.5(29) 3 1.40 0.41(11) 4 1.40 0.306(58)

Atomic force in the C2 molecule

We have performed a DMC simulation of the C2 molecule
at the same off-equilibrium geometry and with the same wave
function as described in Sec. VI B, using a time step of
0.01 a.u. [47] and a target population of 500 walkers, and we
have evaluated the local Hellmann-Feynmann and total forces
for each walker every 5000 steps.

The standard and tail-regression estimator of the
Hellmann-Feynmann force is given in Table VII and plotted
in Fig. 17 as a function of sample size M. These results are
very similar to their VMC counterparts; the nonmonotonic
nominal standard error is again up to 60 times the uncertainty
in the tail-regression estimator, of which a factor of 2.5 comes
from imposing the constraint cL

0 = cR
0 .

The results we obtain for the total force at the largest
considered sample size of M = 108 are given in Table VIII. In
this case, the uncertainty in the tail-regression estimator of the
total force is 10% smaller than the standard error. From these
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FIG. 17. Convergence of (a) the estimators of 〈A〉 and (b) their
uncertainties as a function of sample size M for the mixed DMC local
Hellmann-Feynman force on a carbon atom along the molecular axis
of the C2 molecule at rCC = 2 a.u. The best value of the Hellmann-
Feynman force of 0.306(58) a.u. is marked with a dashed line in
(a) and dashed lines proportional to M−1/2 passing through the last
point of each of the tail-regression estimator curves are shown in
(b) as guides to the eye. 68.3% confidence intervals are shown as
shaded areas.

tests we conclude that the tail-regression estimator is directly
applicable to DMC samples generated using relatively long
decorrelation loops, with essentially the same benefits as we
have found for VMC samples.

VIII. CONCLUSIONS

We have introduced a conceptually simple estimator of
expectation values for heavy tailed probability distributions
whose power-law tail indices are known. Unlike the stan-
dard estimator, the tail-regression estimator is immune to the
breakdown of the central limit theorem for distributions of
leading-order tail exponent 2 < μ � 3. Our regression frame-
work is designed to yield asymptotically normally distributed
results, as reflected in the observed asymptotic M−1/2 decay
with sample size M of the uncertainty in all of our tests,
and successfully exploits known analytical relations between
leading order tail coefficients to improve the estimation. We
have also demonstrated the estimation of the variance of
distributions of leading-order tail exponent 3 < μ � 5 whose
uncertainty is ill-defined under standard estimation.

Our tests of the tail-regression estimator with variational
and diffusion quantum Monte Carlo data identifies two use
cases of particular practical relevance. While the standard
estimator yields accurate expectation values of the energy at
large enough sample sizes, standard confidence intervals on
the VMC variance of the local energy are formally undefined.
The tail-regression estimator is capable of delivering valid
confidence intervals on the variance which are up to 45%
smaller than those associated with the nominal standard error
in our tests. The tail-regression estimator also yields valid,
convergent confidence intervals on the VMC and DMC atomic
force, including the Hellmann-Feynman force in all-electron
systems for which we obtain uncertainties up to 60 times
smaller than the nominal standard error. The combination

TABLE VIII. Standard and tail-regression estimators of 〈A〉 for
the mixed DMC local Hellmann-Feynman force and total force on a
carbon atom along the molecular axis of the C2 molecule at rCC = 2
a.u., obtained from 108 sample points.

Standard TRE TRE(1)

〈FHFT〉 −2.5(29) −0.41(11) −0.306(58)
〈FHFT + FZV + FP〉 0.5810(42) 0.5817(38)
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of the “zero-variance” variance-reduction technique with the
tail-regression estimator yields accurate confidence intervals
on the atomic force.

Our present work shows that the principles underpinning
the tail-regression estimator are robust, and systematic use of
the technique for treating quantum Monte Carlo data would be
desirable. However, further work could improve the applica-
bility of our present formulation. We have used the bootstrap
to enable the evaluation of meaningful confidence intervals on
a range of functions, but this approach should be replaced with
the use of a closed expression for the uncertainty on the tail-
regression estimator in production calculations. In turn, this
would allow the development of an “on-the-fly” reformulation
of the method that would avoid the need to store all local val-
ues of the desired observables, unaveraged, for later analysis.
Dropping the requirement that sample points be independent
and serially uncorrelated would also be desirable in order to
reduce the computational cost of the QMC calculations. With
these refinements, the tail-regression estimator will ultimately
represent a great advance in ensuring the statistical soundness
of results obtained from quantum Monte Carlo and similar
methods.
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APPENDIX: TAIL-INDEX ESTIMATION METHODS

Tail-index estimation methods draw inference on the prin-
cipal exponent μ of a power-law heavy tail of leading-order
form PA(A) = c0A−μ at A → ∞. The Hill estimator [27] of
the first-order tail index, μ − 1, is

1

μ − 1
≈ 1

MR

MR∑
m=1

ln A(m) − ln A(MR+1). (A1)

It can be shown that Eq. (A1) is in fact equivalent to a
logarithmic-scale least-squares fit to the tail of the distribu-
tion [28]. Substituting the leading-order form of PA(A) into
Eq. (27) and taking logarithms yields

ln A(m) ≈ 1

μ − 1
(− ln qm) + 1

μ − 1
ln

(
c0

μ − 1

)
, (A2)

which is a linear relationship between ln A(m) and − ln qm

with slope 1
μ−1 . Estimation of this slope by linear regression

following Eq. (A2) yields Eq. (A1) for the fitted slope if the
mth data point is weighted by

wm =
(

ln
qMR+1

qm

)−1

, (A3)

and c0 is set so that the fit passes through the (MR + 1)th
point. The optimal value of MR for the Hill estimator can
thus be found by optimizing a goodness-of-fit measure with
respect to MR [28], such as the χ2 value of the fit. Regression
methods for tail-index estimation are found to be particularly
robust [30].
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