
 

1 
 

Prediction of In Vivo Pharmacokinetic Parameters and Time–
Exposure Curves in Rats Using Machine Learning from the Chemical 
Structure 
 

Olga Obrezanova1, Anton Martinsson2, Tom Whitehead3, Samar Mahmood4, Andreas Bender1, Filip 

Miljković2, Piotr Grabowski1, Ben Irwin4, Ioana Oprisiu2, Gareth Conduit3, Matthew Segall4, Graham 

Smith1, Beth Williamson5, Susanne Winiwarter6, and Nigel Greene7 

1Data Science and AI, Imaging and Data Analytics, Clinical Pharmacology & Safety Sciences, R&D, 

AstraZeneca. Cambridge, UK 
2Data Science and AI, Imaging and Data Analytics, Clinical Pharmacology & Safety Sciences, R&D, 

AstraZeneca, Gothenburg, Sweden 
3Intellengens, Eagle Labs, Chesterton Road, Cambridge, UK 
4Optibrium,  
5Drug Metabolism and Pharmacokinetics, Research and Early Development, Oncology R&D, 

AstraZeneca, Cambridge, UK 
6Drug Metabolism and Pharmacokinetics, Early CVRM, Biopharmaceutical R&D, AstraZeneca, 

Gothenburg, Sweden 
7Data Science and AI, Imaging and Data Analytics, Clinical Pharmacology & Safety Sciences, R&D, 

AstraZeneca, Waltham, US 

ABSTRACT 

Rodent pharmacokinetic (PK) data and human and animal in vitro systems are utilised in drug 

discovery to define the rate and route of drug elimination. Accurate prediction and mechanistic 

understanding of drug clearance and disposition in animals provide a degree of confidence for 

extrapolation to human. In addition, prediction of in vivo properties can be used to improve design 

during drug discovery, help to select compounds with better properties, and reduce the number of in 

vivo experiments. In this study, we build machine learning models able to predict rat in vivo 

pharmacokinetic parameters, including rat oral bioavailability and clearance, which utilise molecular 

chemical structure and, either measured or predicted, in vitro ADME parameters.  The models were 

trained on internal in vivo rat PK data for over 3,000 diverse compounds from multiple projects and 

therapeutic areas. We compare performance of various traditional machine learning algorithms and 

deep learning approaches, including graph convolutional neural networks that encode molecule graph 

structure. The best models achieved R2=0.63 for clearance and R2=0.55 for bioavailability.  The models 

provide a powerful way to guide the design of molecules with optimal PK profiles, to enable the 

prediction of virtual compounds e.g. during DMTA cycles, and to drive prioritisation of compounds for 

in vivo assays.  

1. INTRODUCTION  

The efficacy and safety of a drug is a function of both its intrinsic molecular properties (such as 

bioactivity against molecular targets, chemical reactivity, etc.), and its concentration at a particular 

site of action as a function of time – i.e., its pharmacokinetic (PK) profile.3 While the former has 

received significant attention recently in the context of ‘Artificial Intelligence’ (AI) in drug discovery in 

areas such as bioactivity prediction4,5 and the de novo design of ligands for particular proteins,6 the 
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impact of AI in the area of modelling in vivo relevant properties, such as PK, is much less pronounced 

at this stage. One reason is that domains differ significantly with respect to the data available:7,8 In 

some areas in vitro proxy assays can be run to characterize compounds,9 such as biochemical assays, 

or also assays for PK-related properties such as logD or solubility, which give rise to large numbers of 

available data points, generated in a relatively consistent manner. This renders this – proxy – space 

for drug discovery relatively amenable to current developments in the machine learning domain, such 

as deep learning.10 Regarding in vivo pharmacokinetics data (as well as in vivo data more generally), 

however, data generation is more costly and complex, leading generally to a lack of data in this 

domain, which does not render the application of some algorithms as straightforward.8 On the other 

hand, due to the direct therapeutic relevance of in vivo assays, as well as their high cost, modelling 

this type of endpoints equally provides a stronger incentive to provide in silico models in this area, 

provided the hurdle of access to suitable data and its normalization for model generation can be 

overcome. Case in point, it has been shown that failure rates in the clinical phases are what makes 

drug discovery (and its failures) so costly7,11 – and hence the more we are able to anticipate 

compounds behaviour in man (as opposed to in vitro assays) early on, the more impact any assays will 

have on overall project success12 when deciding which compounds to take forward in a given project. 

Provided in silico models are able to model endpoints which are relevant for compound behaviour in 

man, they are able to hence support such decisions. 

The purpose of this study is to develop machine learning models for prediction of in vivo rat PK 

parameters utilising molecular chemical structure and in vitro measured (or predicted) ADME and 

physicochemical properties of compounds.  The model is based on a dataset of more than 3,000 in 

vivo studies with intravenous (iv) and oral (po) administration with a range of PK endpoints, including 

the area under the concentration-time curve (AUC), the maximum plasma concentration (Cmax), half-

life (t1/2), clearance (CL), volume of distribution (Vss), and oral bioavailability (F) as well as 

concentration-time profiles.  

In a drug discovery project these parameters, depending on the particular indication and compound, 

need to be within certain ranges for the drug to achieve efficacy in vivo in combination with a suitable 

safety profile at a given dosing regimen.3 For example, for an oral drug, bioavailability needs to be high 

enough to achieve a therapeutic efficacy at the site of action, while clearance needs to be sufficiently 

low due to the same reason as well as to achieve practically feasible dosing regimes. At the same time, 

a balance between efficacy and safety needs to be found.  Here, the key parameter related to safety 

is Cmax which needs to be generally below the Maximum Tolerated Dose (MTC), while at the same time 

the concentration needs to be higher than the Minimum Effective Concentration (MEC). While details 

differ significantly from case to case, the PK profile of a compound is as much a requirement to achieve 

efficacy and safety of a compound in vivo as its intrinsic properties, and hence the computational 

prediction of compound concentration over time is of crucial importance for compound selection. This 

is the case for both individual projects, as well as for computational approaches such as those involving 

the Design-Make-Test-Analyse (DMTA) cycle,13 and in particular with the view of eventual efficacy and 

safety of the compound in the clinic in mind. 

Current approaches to in vivo PK prediction are (among others) the well-stirred model,14,15 and 

physiologically-based pharmacokinetics (PBPK) modelling.16 The well-stirred models assumes the drug 

concentration in liver to be equal to that of incoming blood (‘well stirred’), and it firstly comprises the 

generation of in vitro data, in particular those on either liver microsomes and/or hepatocytes, and a 

subsequent extrapolation step to humans.15 Significant advances have been made recently in 

anticipating human in vivo PK from in vitro data, and recent work from AstraZeneca17 describes that 

“83% of AstraZeneca drug development projects progress in the clinic with no PK issues; and 71% of 
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key PK parameter predictions (64% of area under the curve (AUC) predictions; 78% of maximum 

concentration (Cmax) predictions; and 70% of half-life predictions) are accurate to within two-fold”. 

This also underpins in particular the ‘right safety’ aspect of drug discovery at AstraZeneca, as described 

in the ‘5R’ strategy18 (with the other ‘R’s being right target, right tissue, right patient, and right 

commercial potential) which has increased success rates from candidate drug nomination to phrase 

III competition from 4% between 2005 and 2010 to 19% between 2012 and 2016.  

Differences between compound behaviour in different types of cells to determine their in vitro 

behaviour exist, and they have recently been better understood.19 Hence, overall, in vitro anticipation 

of compound in vivo PK provides a cornerstone of compound evaluation at early preclinical phases 

currently. PBPK models on the other hand are usually applied later in drug discovery projects, and they 

comprise an approximation of the (physiological) human body and its major organs, and  modelling 

compound concentration in different organs as a series of coupled differential equations which need 

to be parameterized in the first place.16 On the one hand, this approach – where successful – is able 

to provide insights into compound exposure in different (major) organs as a function of time, which is 

physiologically of tremendous value (given that accumulation may occur, leading to local 

concentrations which differ from those observed in plasma). Also, the influence of intrinsic factors, 

such as sex and age, as well as extrinsic factors (such as drug-drug interactions) on exposure can be 

modelled. On the other hand, the parametrization of PBPK models requires compound-dependent 

parameters and manual input into model development, which is hence generally not possible for 

compounds in a high-throughput manner. 

We can conclude from the above discussion that both the well-stirred model and PBPK modelling 

approaches require the experimental determination of in vitro parameters and subsequent 

extrapolation/modelling, which is hence not an approach which is feasible purely based on chemical 

structure. This, however, is what would be required to also assess virtual compounds, be it during the 

design process in a drug discovery project, or e.g. in the context of generative models for prioritizing 

large numbers of structures in silico. 

For practical purposes, hence the prediction of PK parameters directly based on chemical structure 

would be desirable, both for individual project use and in the context of current computational 

approaches, such as DMTA cycles, in order to move compound prioritization from proxy properties, 

such as bioactivity on target and a series of in vitro properties, to more relevant in vivo space.7,8  

Returning to the in silico modelling of compound in vivo PK directly based on chemical structure recent 

approaches shall now be briefly summarized here. In one of the first studies of its type Lowe et al.20 

modelled rat and human microsomal intrinsic clearance, as well as plasma protein binding 

represented as the fraction of compound unbound, using Artificial Neural Networks, Supports Vector 

Machines and other approaches in combinations with 2D and 3D descriptors for 400-600 compounds 

per endpoint which was compiled from literature. Both human and rat clearance models were able to 

capture trends in the data rather well, while models for fraction unbound were based on unbalanced 

datasets (for compounds with generally low fraction unbound) and its practical utility is less easy to 

assess. A subsequent study21 established QSPR models for four human pharmacokinetic parameters, 

including volume of distribution at steady state, clearance  half-life, and fraction unbound in plasma, 

using a data set consisting of 1,352 drugs (which is currently also the largest publicly available dataset 

of its type22). For clearance endpoint the model accuracy is better than for in vivo clearance models 

by other groups, and this might be due to the fact that iv data was modelled in this work, as well as 

due to a bias towards compounds with low clearance, due to the way the dataset was derived. Also 

more specific models for volume of distribution have been described recently,23 based on Random 
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Forest methods, and evaluated using an independent test set of 213 compounds, which was found to 

compare favourably to methods based on in vitro properties.  

Other studies compared in silico predictive models for PK with PBPK, here considering also different 

tissues, on 159 structurally varied types of drugs, food components, and industrial chemicals.24 In this 

comparison, an in silico one-compartment model and a PBPK model comprising the gut, liver, main, 

and kidney compartments were developed in parallel. Compounds were ‘virtually dosed’ orally in rats, 

and the relationship between the simulated internal concentrations in tissue/plasma and their lowest-

observed-effect levels was determined. It was found that the Cmax and AUC obtained by one-

compartment models and modified simple PBPK models were closely correlated. While this work is 

conceptually different from modelling PK properties of compounds solely based on chemical structure 

it should still be mentioned here, since, in combination with bioactivity/assay endpoints of relevance 

for toxicity in a particular organ, this direction of work may well be suitable to move the field towards 

organ-based risk assessment.25,26 

Recently also deep learning and graph convolutional algorithms have been applied to in vivo PK 

modelling. In a study on a large dataset of about 1,900 in vivo datapoints27 researchers at Bayer 

modelled intravenous (i.v.) and oral drug exposure and oral bioavailability in rats using a variety of 

hybrid modelling approaches, such as using different transformations (such as deep neural networks) 

and different types of modelling methods. Compounds were described as either (a) six experimentally 

determined in vitro and physicochemical properties, namely, membrane permeation, free fraction, 

metabolic stability, solubility, pKa value, and lipophilicity; or (b) the outputs of six in silico absorption, 

distribution, metabolism, and excretion models trained on the same properties; or (c) the chemical 

structure encoded as fingerprints or SMILES strings. The authors found that exposure after iv 

administration can be predicted similarly well using experimental and predicted properties as input. 

The model errors for exposure after oral administration were generally higher, and the prediction 

from in vitro inputs performs significantly better in comparison to their in silico counterparts, which 

the authors attributed to the higher complexity of oral bioavailability. Using graph convolutional 

networks on datasets from Merck the authors of another study28 were able to show that their method, 

PotentialNet, achieves a 64% average improvement and a 52% median improvement in R2 over 

Random Forests across all 31 data sets used in the study (which comprise a wide range of mostly 

ADME-related endpoints plus in vivo dog and rat PK endpoints). For in vivo endpoints, such as rat and 

dog clearance data, only marginal improvements in performance were seen. Imputation has also 

recently shown to improve performance on a wide variety of ADME endpoints.29 Using transfer 

learning and multitask learning30 one recent model was pre-trained on over 30 million bioactivity data 

points, and then four human pharmacokinetic parameters for 1104 FDA approved small molecule 

drugs were modelled, namely oral bioavailability, plasma protein binding, apparent volume of 

distribution at steady-state and elimination half-life. The multitask learning model generally has 

shown best performance for the endpoints modelled, although not with a very large margin in some 

cases. 

While studies using machine learning for PK prediction exist, one key question is whether they perform 

better with respect to predictive power for the in vivo situation than extrapolating from in vitro data. 

In this regard, a recent study compared the in vitro to in vivo extrapolation (IVIVE) approach and 

machine learning approaches for in vivo clearance prediction in rat31 on a structurally diverse set of 

1,114 compounds with known in vitro intrinsic clearance and plasma protein binding. The predictivity 

of machine learning models was generally improved by incorporating in vitro parameters as input 

features. On the other hand, clearance prediction utilizing in vitro intrinsic clearance data in 

combination with the well-stirred model was found to perform substantially worse compared to 
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machine learning approaches. Similar conclusions were made in a study by the same authors which 

compared machine learning models for in vivo AUC after oral administration to IVIVE approach using 

a dataset of 595 compounds.32 Both of these studies, in agreement with our findings and the current 

work, suggest that in silico machine learning models for compound in vivo PK properties are of 

practical value for compound prioritization. 

From the above survey we can conclude that there exists prior art in the area of modelling in vivo 

compound PK based on chemical structure. Some endpoints, such as volume of distribution have been 

shown before to be modellable across multiple studies, while for other endpoints, such as clearance 

and in particular bioavailability, results differ more widely, and they are generally less satisfactory. 

However, what is common to the above studies is that models were generally either based on limited 

compound datasets, and/or the number of PK endpoints modelled was limited to a small number of 

them. 

To address this point, in this work we will describe a machine learning model that predicts a wide 

range of rat in vivo PK parameters, bioavailability (F), clearance (CL), volume of distribution (Vss), AUC, 

Cmax and t½. The model is trained and validated on a large dataset of more than 3,000 compounds. The 

combination of endpoints modelled and the number of in vivo data used for training, to the best of 

the knowledge of the authors, makes it the most comprehensive model of its type, both in output 

property space, and with respect to chemical space coverage. Furthermore, given its non-clinical 

nature, the datasets used span property ranges of beyond those of just successful drugs, and hence 

better model predictivity across the value range can be expected from this data set. We explored 

state-of the-art AI approaches, such as graph convolutional neural networks that encode molecule 

chemical graph structure,33 as well as traditional machine learning algorithms utilising molecular 

property descriptors.  In addition to chemical descriptors, the models use several in vitro ADME 

properties as input features. Various imputation approaches for missing in vitro data, including 

utilising corresponding in silico predictions or using deep learning technology29 able to handle sparse 

and noisy experimental data, were explored. The model is based on input properties which can be 

predicted in silico, and hence it can be applied to any compound structure, including virtual 

compounds, guiding design of compounds with optimal PK profiles. The model can be used to drive 

prioritisation of compounds for in vivo assays and to inform compound selection in DMTA cycles, 

which will increase efficiency of the drug discovery and reduce compound attrition. 

2. METHODS 

2.1. Data set 

In vivo rat PK data (intravenous (iv) and oral (po) administration) were extracted from the internal 

AstraZeneca database. To ensure data consistency only data generated in male Han Wistar rats since 

2013, at a single investigation site, were used. The dataset focused on low dose PK studies e.g. the 

majority of compounds (>92%) were dosed <5 µmol/kg iv and <10 µmol/kg po. At least two replicates 

(i.e. two animals) for each administration route were available per compound. Nine PK parameters 

were extracted for modelling; five parameters corresponded to the iv route: the area under the 

concentration curve (AUC iv), the maximum plasma concentration (Cmax iv), half-life (t1/2 iv), clearance 

(CL) and volume of distribution at steady state (Vss), and four parameters corresponded to the po 

route: AUC po, Cmax po, t1/2 po and oral bioavailability (F), defined as the percentage of a po dose that 

reaches the systemic circulation given by the following equation: 

1. 𝐹 (%) = ( 
𝐴𝑈𝐶𝑝𝑜

𝐴𝑈𝐶𝑖𝑣
∙

𝐷𝑖𝑣

𝐷𝑝𝑜
) . 100 
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Where, Div and Dpo are iv and po administration doses, respectively.   

In addition, dose dependent time-concentration curves were extracted from the iv and po routes, 

spanning a time period of 2 min to 24 h.    

2.1.1. In vivo experimental details 

Male Han Wistar rats, aged 6-8 weeks, were dosed either via the tail vein (iv) or oral gavage (po). 

Compounds were dosed in cassettes of up to 5 compounds at low doses (see above). Standard 

formulations for iv were solutions containing cyclodextrin or other solubilizing agents in acceptable 

quantities, whereas for po, suspensions using hydroxypropyl methylcellulose (HPMC) were usually 

preferred. Blood samples were taken at pre-defined timepoints post dosing, usually 10 occasions up 

to 24 h, collected in EDTA-containing tubes and centrifuged at 4000 g for 5 min at 4 °C to obtain 

plasma. Plasma samples were stored at -75 °C until they were analysed using a liquid chromatography-

tandem mass spectrometry (LC-MS/MS). The resulting time-concentration profiles were evaluated 

using non-compartmental analysis (NCA). 

2.1.2. Data curation 

The AUC (uM*h), Cmax (uM) and concentration values (μM) were scaled by the dose (μmol/kg). Two 

formats of the data were considered – aggregated (where the values of the PK parameter were 

averaged between replicates) and non-aggregated (where each compound had several replicate 

values for the PK parameter).  The time-concentration curves were non-aggregated (majority of 

compounds had two curves per each administration route). Compounds with molecular weight higher 

than 750 Da were excluded from the dataset. The final dataset consisted of 3070 compounds.  

2.1.3. Data transformations 

AUC (iv and po), Cmax (iv and po), CL (ml/min/kg) and Vss (l/kg) were log10-transformed. To be able to 

include zero values in the analysis a minimum cut-off value amin was defined in log-transformed space 

for each of these parameters (based on the data spread): amin= -4 for AUC (iv and po) and Cmax iv,  amin= 

-5 for Cmax po, amin= -0.5 for CL, amin=-2 for Vss. No transformation was applied to half-life (h) iv and po. 

F was first normalised by the maximum value in the dataset (F = 160 %), normalised values below 0.01 

were set to 0.01, then the logit transformation was used, where logit y = log10 (y/(1-y)). Concentration 

values in time-concentration profiles were log10-transformed, no amin cut-off was applied. 

2.1.4. Experimental variability of the measurements 

The experimental variability present in the data was estimated by calculating the standard deviation 

between replicate measurements for each compound with more than two replicates and taking the 

95%-quantile of the distribution of standard deviations as the estimate for the experimental 

noise/error.   

2.1.5. In vitro ADME properties 

Nine experimentally obtained ADME and physicochemical properties were added to the dataset to be 

used as input features to the model. These in vitro data points were collected prior to the in vivo 

studies and are often performed early in lead optimisation. The properties describe compound 

lipophilicity, solubility, permeability, intrinsic metabolic clearance and plasma protein and hepatocyte 

binding:  

• LogD 

• Solubility (Dried DMSO) 
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• Caco-2 intrinsic permeability 

• Caco-2 efflux ratio      

• Human liver microsome intrinsic clearance 

• Rat hepatocyte intrinsic clearance 

• Rat plasma protein binding 

• Human plasma protein binding 

• Fraction unbound in rat hepatocytes 

Log-transformed values were used for Caco-2 intrinsic permeability, Caco-2 efflux ratio, human liver 

microsome and rat hepatocyte intrinsic clearance values. Rat and human plasma protein binding, as 

well as fraction unbound in rat hepatocytes were logit transformed. If multiple measurements existed 

for a compound, the replicate values were averaged by using the arithmetic mean for log-transformed 

properties (post transformation) and the median for binding values. Overall, about 25% of the in vitro 

values were missing in the dataset. The assay-dependent percentage of missing values   ranged from 

6% (LogD) to 55% (fraction unbound in rat hepatocytes).  

2.1.6. In vitro ADME experimental details 

In vitro properties were measured in routine high throughput assays: LogD was measured using a 

shake flask method in 96 well plates.34,35 Solubility was measured as thermodynamic solubility from 

DMSO stock solution, where DMSO was evaporated before analysis again using a shake-flask 

method.34,36 Caco-2 intrinsic permeability was measured in the presence of a transporter inhibitor 

cocktail considering a pH gradient using pH 6.5 at the apical side and pH 7.4 at the basolateral side, 

whereas pH was 7.4 on both sides when measuring the Caco-2 efflux ratio.37 Intrinsic clearance was 

determined in high throughput assays using incubations of cryopreserved human microsomes or rat 

hepatocytes at 37 °C for up to 60 or 120 min, respectively.38-40 Plasma protein binding data was 

generated using equilibrium dialysis.39,41,42 Fraction unbound in rat hepatocytes was also determined 

using equilibrium dialysis.43  

2.1.7. In silico predictions of in vitro ADME properties 

Predictions for the ADME and physicochemical properties listed in section 2.1.5 were added to the 

dataset. The models for these properties were developed using large internal datasets (≥4000 

compounds in smaller datasets and up to 160,000 compounds in the larger datasets). Models for the 

Caco-2 intrinsic permeability and Caco-2 efflux ratio were developed using the random forest 

algorithm with OESelma molecular property descriptors44 (see section 2.2.1). Scikit-learn 

implementation was used for the random forest.Error! Reference source not found. The rest of the properties w

ere modelled using a support vector machine with signature descriptors46 and the conformal 

prediction framework47 implemented in the CPSign software.48,49 A temporal test set (10% of the data) 

was used for validation, where a dataset was split chronologically into the training and test sets and 

10% of latest data are reserved for the test set. The approach represents real life scenario of model 

usage. The models are regularly updated, with frequency of update varying between 1 to 6 months, 

depending on the amount data being generated for each property. Model performance is monitored 

continuously by predicting the new data before each model update. Details of model performance 

and methods were described recently by Oprisiu and Winiwarter.50 

2.1.8. Missing data imputation 

As mentioned in section 2.1.5, around 25% of the in vitro ADME property values were missing. Since 

the majority of machine learning algorithms require all feature values to be present, two approaches 

for the imputation of missing values were adopted. The first approach, further on referred to as 
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‘replace’ approach, was to replace missing in vitro values with corresponding in silico predictions. High 

correlation was observed between experimentally measured values for properties and corresponding 

predictions (correlation coefficient in the range 0.80-0.95) which is not surprising because the 

experimental data is likely to be contained within training sets of the in silico models.  The second 

approach was an imputation approach built-in within Alchemite method,29,51 referred to as ‘impute’ 

approach, it is described below in section 2.3.5.      

2.1.9. Training/test data set split 

Temporal set split was used to divide the data into the training and test sets, that is around 10% of 

compounds (312 compounds) with latest synthesis date were separated into the test set. The test set 

was not used during training and hyperparameter optimisation. Table 1 describes number of 

compounds in the training and test set for all endpoints.  

Table 1: Number of compounds/rows in the training and test sets for the aggregated and non-aggregated data formats. 

Endpoint N train N test 

Aggregated format 

AUC iv 2686 312 

AUC po 1822 261 

F 1817 266 

CL 2682 312 

Cmax iv 2689 312 

Cmax po 1899 273 

t1/2 iv 2685 312 

t1/2 po 1755 256 

Vss 2686 312 

Overall (multi-task format) 2758 312 

Non-aggregated format 

Overall (multi-task format) 9923 1183 

Concentration of dose-time profile iv 5895 632 

Concentration of dose-time profile po 4266 578 
 

2.2. Chemical descriptors 

2.2.1. OESelma molecular properties 

The OESelma descriptors were generated by AstraZeneca’s in-house program OESelma.44 They 

comprise around 100 common 1D and 2D molecular descriptors related to physico-chemical 

properties, such as size, ring structure, flexibility, atom types, hydrogen bonds, polarity, electronic 

environment, partial atom charge, and lipophilicity, including connectivity indices.52 Additionally, logD 

and logP from ACDLabs53 and logP from Biobyte54 were included in the descriptor set. These 

descriptors have been shown useful in QSAR modelling, see e.g. works by Bruneau,55 Wood et al.56 

and Fredlund et al.37 

2.2.2. Chemprop graph convolutions 

In contrast to traditional chemical descriptors, graph convolutional neural networks learn how to 

represent molecules directly from chemical structure in an end-to-end learning fashion.57,58  In this 

study, the directed message passage neural network framework (D-MPNN) Chemprop33 was used. 

Chemprop consists of a message-passing phase that creates molecular representations using a graph 
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convolutional neural network and a readout phase that learns and predicts the final endpoints. The 

D-MPNN is initialized with a set of atom features (atom type, number of bonds, formal charge, 

chirality, number of bonded hydrogen atoms, hybridization, aromaticity, atomic mass) as nodes and 

bond features (bond type, conjugation, ring membership, geometric isomerism) as edges in a graph 

representation. From the graph, messages are created from the bond vectors which continuously 

update the molecular representation based on the neighbouring atoms vectors. The weights and 

biases for this network are updated during training and the hyperparameters are optimized as 

described in section 2.3.1 covering the readout phase.33  

2.2.3. Signature descriptors 

Signatures are 2D descriptors46 which represent atomic signatures of a molecule. An atomic signature 

is a canonical representation of the atom’s environment up to a predefined connectivity, denoted as 

height. Signature CPSign implementation was used48 with default settings. Signature heights were 

ranging from 0 to 3.  

2.2.4. StarDrop descriptors 

The descriptors were calculated with the Auto-Modeller™ module of the StarDrop™ software59 using 

SMILES strings defining the structure of each compound. A total of 330 descriptors were calculated, 

including whole-molecule properties such as molecular weight, logP, and polar surface area; and 2D 

structural fragments defined by SMARTS strings.Error! Reference source not found. 

2.3. Description of modelling techniques 

2.3.1. Chemprop 

The readout phase of Chemprop is a feed-forward neural network.33 Five-fold cross-validation based 

on scaffold splits was performed to optimize a set of hyperparameters: size of the layers in the 

convolutional neural network, number of message-passing steps, dropout and number of layers in the 

feed-forward networks. The scaffold splitting ensures that each molecular scaffold, calculated using 

the RDKit implementation of Bemis-Murcko decomposition, only appears in one of the splits.60 As a 

result, the cross-validation performance is based on unseen chemical space, which is similar to how 

models are used in an industrial setting. ReLU (Rectified Linear Unit) was chosen as the activation 

function.62 Five models with the same architecture but different parameter initializations were trained 

for 70 epochs and used as an assembly providing uncertainty in prediction as well as prediction values. 

The average of predictions of individual ensemble models was taken as predicted value and the 

standard deviation between individual predictions estimated the uncertainty. The algorithm was used 

to build both single-task and multitask models, where nine PK parameters represented multiple tasks. 

In addition to the graph convolutions, in vitro ADME properties with missing values replaced with 

corresponding in silico predictions (‘replace’ approach) were added to the final feature set. 

2.3.2. Gaussian Processes 

Gaussian Processes is a kernel-based Bayesian probabilistic method63,64 which was previously 

successfully utilised for ADME and PK modelling.65-67,31,32 Matlab 2019a implementation was used in 

this work.Error! Reference source not found. Five kernel functions were explored: exponential, squared e

xponential, rational quadratic, Automatic Relevance Determination (ARD) squared exponential and 

ARD exponential. For the rest of the hyperparameters, the defaults were accepted.  Ten-fold random-

based cross-validation was used to supervise model performance. The algorithm was used with 

OESelma descriptors and in vitro ADME properties (‘replace’ approach for missing values). 
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2.3.3. Gradient Boosting Regression 

Gradient Tree Boosting is an algorithm which produces an ensemble of weak decision trees and can 

be used both for regression and classification. It is a generalization of adaptive boosting to arbitrary 

differentiable loss functions. The boosting works in an additive way, where weak learners are added 

one at a time and the optimization is driven by gradient descent like procedure. Gradient boosting 

regression as implemented within Scikit-learn was used.Error! Reference source not found. Grid search with five-f

old random-based cross-validation was used to optimize hyperparameters and to supervise model 

performance in training. The algorithm was used with OESelma descriptors and in vitro ADME 

properties (‘replace’ approach for missing values). 

2.3.4. SVM – CPSign 

CPSign algorithm48 is a support vector machine with signature descriptors46 and a conformal prediction 

framework.47 RBF kernel was used in the models with default values for hyperparameters. Five-fold 

random-based cross-validation was used to supervise model performance and to perform calibration. 

2.3.5. Alchemite 

Alchemite is an imputation and prediction method designed to handle sparse input data that has been 

used in a variety of chemistry and materials science domains.29,51,69 In this work it was used to predict 

either pharmacokinetic parameters, in common with the methods described above, or 

pharmacokinetic curves directly. In both cases Alchemite used an ensemble of 200 sub-learners 

trained on random subsets of the available training data, with the resulting prediction being the 

average of the ensemble’s predictions and the sub-learners’ variance giving an estimate of the 

uncertainty. Alchemite was run for predicting PK parameters using three different classes of input 

data: the ‘iv’ approach used only in vitro data as input, which was sparse, and so was imputed as part 

of the model training; the ‘ivis’ approach used both sparse in vitro data and complete in silico data as 

input, relying on Alchemite to identify the correlations between the datasets to impute the gaps in 

the in vitro data; and the ‘replace’ method, where the missing in vitro values were directly filled using 

in silico results (see Table 2). In all cases five-fold random-split cross-validation was used to optimize 

hyperparameters using the Bayesian Tree of Parzen Estimators algorithm.70 

Alchemite was used to build models directly of PK concentration-time curves as well as PK parameters. 

Both iv and po dosing PK curves were modelled simultaneously, using the ‘replace’ approach to deal 

with missing in vitro data. Alchemite uses the measurement time as an additional input when 

modelling curve data, creating a list of time points for each curve, and associating these with an equal-

length list of concentrations, in parallel for the iv and po curves. At training time these lists are 

expanded into multiple training data points on-the-fly, ensuring that curves with different numbers of 

data points are weighted equally by the algorithm (to avoid putting more emphasis on curves with 

more measurement points). At prediction time an arbitrary list of time points can be evaluated in 

parallel. 

In the experimental concentration-time data many points were missing as the measured 

concentration fell below the measurement tolerance: for modelling purposes these points were 

replaced by the minimum measured concentration in the dataset (4.3 x 10-6 μM/µmol/kg) to ensure 

the model was aware of the tendency to low concentrations at late times. The log-concentration was 

modelled to provide accuracy over multiple order of magnitude of concentration.   
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2.3.6. Combinations of algorithms and descriptors 

Not all combinations of descriptors and modelling techniques were investigated. Table 2 describes 

approaches and algorithms which were explored and specifies abbreviations used for various 

techniques.   

Table 2: Combinations of features, algorithms and approaches explored together with respective abbreviations.  

Algorithm ChemProp 
Multi-Task 

ChemProp 
Single-Task 

Gradient 
Boosting 
Regression 

Gaussian 
Processes 

Support 
Vector 
Machine 

Alchemite 
Multi-Task 

Input features Graph con-
volutions 
 
 
ADME 
properties 

Graph con-
volutions 
 
 
ADME 
properties 

 
 
OESelma 
descriptors 
ADME 
properties 

 
 
OESelma 
descriptors 
ADME 
properties 

Signature 
descriptors 
OESelma 
descriptors 
ADME 
properties 

 
 
StarDrop 
descriptors 
ADME 
properties 

U
se

 o
f 

A
D

M
E 

fe
at

u
re

s 
&

 m
is

si
n

g 
va

lu
e

s 
ap

p
ro

a
ch

e
s  Aggregated format 

ADME in vitro (‘replace’ 
for missing values)  

ChemProp 
MT 

ChemProp 
ST 

GBoost GPR CPSign 
Alchemite 
(replace) 

ADME in vitro (‘impute’ 
for missing values) 

     
Alchemite 

(iv) 

ADME in vitro (‘impute’ 
for missing values) + 
ADME in silico 

     
Alchemite 

(ivis) 

ADME in silico   GBoost (is)    

 Non-aggregated format 

ADME in vitro (‘replace’ 
for missing values)  

     Alchemite 
(replace) 

nAgg 

ADME in vitro (‘impute’ 
for missing values) 

     Alchemite 
(iv) nAgg 

ADME in vitro (‘impute’ 
for missing values) + 
ADME in silico 

     
Alchemite 
(ivis) nAgg 

2.  

2.4. Evaluation of uncertainty estimates 

Two metrics were considered to evaluate the quality of different uncertainty estimates – ranking-

based and calibration-based.71  

2.4.1. Ranking-based confidence curve 

To construct the confidence curve, the compounds are ordered by the predicted uncertainty in a 

decreasing order. The compounds with highest uncertainty are gradually removed and RMSE is 

measured for a remaining subset. RMSE of the subset (100-n % of compounds with the lowest 

uncertainty) is plotted as a function of confidence percentile n.71 The so-called ‘oracle’ confidence 

curve represents a perfect situation, where the true error is used to order the compounds. In the ideal 

scenario, the confidence curve is as close as possible to the oracle curve which represents a lower 

bound.  The area under the confidence-oracle (AUCO) error which is defined as the difference between 

the areas under both curves, can be used as a quality metric.  

2.4.2. Calibration curve 

In the calibration curve, the actual values of predicted uncertainty are used as opposed to the ranking 

order only. In interval-based calibration, it is assumed that each prediction and its uncertainty 
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correspond to the mean and the standard deviation of a Gaussian distribution defining predictive 

distribution. To build a calibration curve, confidence value is varied between 0 and 1. For each 

confidence value, the symmetric confidence interval around the mean is defined (for a fixed 

confidence, the interval around the mean would be different for each compound, because the 

standard deviation defined by uncertainty is compound dependent). Then, it is calculated for how 

many compounds the observed values fall in the corresponding confidence interval of the predictive 

distribution, i.e. the empirical probabilities of belonging to each interval. In a perfectly calibrated 

model, n % of the predictions would fall in the n-th confidence interval, resulting is a diagonal line for 

a perfect calibration curve. In a well-calibrated model, the calibration curve is close to the diagonal 

line. The area under the calibration error (AUCE) curve which is defined as the absolute difference 

between the areas under the calibration and perfect curves, can be used as a quality metric.71 

Two calibration curves, corresponding to two values of uncertainty, were considered. In one case, the 

uncertainty predicted by the model σm was used to construct the curve. In the second case, the 

uncertainty due to variability in experimental measurements, also called aleatoric uncertainty, was 

added to the model uncertainty to define the total uncertainty σtotal as follows 

𝜎𝑡𝑜𝑡𝑎𝑙
2 = 𝜎𝑚

2 + 𝜎𝑒𝑥𝑝
2  

where σexp is an experimental error. 

2.5. Description of well-stirred model 

Hepatic elimination remains the primary route of elimination for drugs72 hence to understand if 

hepatic metabolic enzymes present in hepatocytes or liver microsomes can account for the CL of a 

compound in animals, in vitro and in vivo extrapolation (IVIVE) using the well stirred model (WSM) is 

routinely applied.Error! Reference source not found.-75 The WSM is a mathematical model of the liver and requires i

ntrinsic clearance from hepatocytes or liver microsomes as input parameters. If CL prediction accuracy 

is high and a mechanistic understanding of compound CL in animals can be achieved this provides a 

level of confidence for extrapolation to human.  

2.6. Calculation of PK parameters from predicted concentration-time profiles. 

PK parameters were calculated from predicted concentration-time curves by the Noncompartmental 

analysis (NCA) using SimBiology App of Matlab R2019a.76,77 Predicted values that fell below half the 

minimum of experimentally observed value (4.3 x 10-6 μM/µmol/kg) were removed to aim for 

consistency with the experimental results in the treatment of low concentrations. 

3. RESULTS AND DISCUSSIONS 

3.1. PK parameter models 

3.1.1. Summary of results 

The purpose of this work was to build an accurate and useful model of the PK parameters and not to 

compare different machine learning algorithms, descriptors and approaches to each other. Therefore, 

only selected combinations of descriptors and modelling techniques were investigated (described in 

section 2.3.6, Table 2).  
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The results of modelling efforts for the aggregated data format are summarised in Figure 1 showing 

coefficient of determination (R2) evaluated on the test set. The detailed results including RMSE on the 

test set are shown in Figure S1 and Table S1. Models with good accuracy were achieved for the 

majority of the endpoints, except for Cmax iv, t1/2 iv and t1/2 po. Figure 1 also shows that there is no 

single technique which exceeds other methods across all endpoints. Alchemite (iv) and Alchemite (ivis) 

use Alchemite method of imputation, based respectively on in vitro data only or in vitro data 

supplemented by in silico data. The rest of the models use a ‘replace’ approach, where missing in vitro 

values are replaced with in silico values. The results show that the models using the ‘replace’ approach 

generally outperform models using imputation. Performance of the Alchemite (ivis) models, which 

uses built-in Alchemite imputation method to impute missing in vitro parameters and also includes in 

silico features, closely follows the performance of the ‘replace’ models; the coefficients of 

determination are slightly lower than those of the corresponding ‘replace’ models, except for Cmax iv. 

For this endpoint the Alchemite (ivis) model showed the highest R2 value of all methods (R2= 0.42), 

even though the difference to the Alchemite (replace) method was minor, and Cmax iv was one of the 

endpoints with overall less accurate models. It is hard to know how much the ‘imputed’ in vitro 

features are used in the models since the highly correlated in silico features are available in the 

descriptor set. (Building the model using only in silico features showed equivalent performance. Data 

is not shown here).  Alchemite (iv) represents imputation of in vitro ADME values in the absence of 

ADME in silico predictions and tests the power of a ‘true’ imputation approach in a scenario where 

predictive models of in vitro properties are not available. It underperforms in comparison with models 

using the ’replace’ approach. This suggests that the in silico models trained on a large set of ADME 

data are more accurate than relying on imputation within a smaller project dataset, which aligns with 

our expectations.    

Figure 1: Coefficient of determination (R2) on the test set for the nine PK parameters using different models built using 
aggregated data format. Alchemite (iv) is Alchemite multi-task DNN algorithm with in vitro features and imputation (plum 
bars), Alchemite (ivis) is Alchemite algorithm with in silico and in vitro features and Alchemite imputation of missing in vitro 
values (dark blue bars).  The rest of the techniques use in vitro features where missing values are replaced with in silico values 
(‘replace’ approach).  Alchemite (replace) is Alchemite algorithm (light blue bars), Chemprop MT and Chemprop ST are 
Chemprop DNN in multi-task and single-task modes (purple and green bars, respectively), GBoost is a Gradient Boosting 
Regression (grey bars), GPR is a Gaussian Processes regression (pink bars) and CPSign is a Support Vector Machine Conformal 
Regression (orange bars).      

Focussing on the models using the ‘replace’ approach, for the majority of endpoints neural network 

algorithms, Alchemite (replace), Chemprop MT and ST, yield the best performing model with the 
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exception of Cmax po where Gaussian Processes model (GPR) provides the best performance. The single 

task neural network models provide broadly equivalent performance to multi-task models on most of 

the endpoints, for Vss the Chemprop single task model performed better than others. The traditional 

machine learning algorithms, Gaussian Processes and Gradient Boosting closely follow neural network 

models in performance for most of endpoints. SVM with conformal regression technique (CPSign) 

underperforms for many endpoints. A possible explanation is that the automatic model building 

procedure used in CPSign is designed for the signature descriptors and – without adaptation – not so 

well suited for other descriptor types such as in vitro ADME properties. It should be noted that there 

is a slight variability in performance of models built by different runs for all techniques apart from the 

Gaussian Processes due to a different initialisation of weights in NN methods and different (random) 

cross-validation splits which would in turn affect hyperparameter optimisation.  Due to this variability, 

which was not fully captured, the performance of all ‘replace’ algorithms apart from CPSign can be 

considered equivalent.  

The best model for each endpoint was selected based on the lowest RMSE (selection on the highest 

R2 produces the same results) on the test set and are shown in Table 3. The models where difference 

between RMSE and the lowest RMSE did not exceed 0.005, were considered of similar performance.    

Table 3: The best model for each PK parameter together with coefficient of determination (R2) and RMSE.  

PK parameter Best model(s) R2 RMSE 

AUC iv Chemprop MT = GPR 0.59 0.28 

AUC po Alchemite (replace), Chemprop ST 0.55 0.61 

F Alchemite (replace), Chemprop ST 0.55 0.46 

CL Chemprop ST, Chemprop MT 0.63 0.26 

Cmax iv Alchemite (ivis), Alchemite (replace) 0.42 0.22 

Cmax po GPR = CPSign 0.60 0.56 

t1/2 iv Chemprop MT 0.44 1.84 

t1/2 po Chemprop MT 0.28 2.30 

Vss Chemprop ST 0.56 0.27 
 

The Alchemite method was also applied to the non-aggregated dataset where each compound had 

several replicate values of the PK parameter. The results are shown in Figure S2. The use of the non-

aggregated data does not present any advantages. For the majority of the endpoints, the performance 

of models based on that format is slightly lower than or equivalent to the performance of models 

based on aggregated format. 

Since bioavailability and clearance represent the most important PK parameters for decision making 

in projects, the models for these are explored in more detail in the following subsections.  

3.1.2. Bioavailability model 

The best model for bioavailability was produced by the Alchemite (replace) method, a multi-task deep 

neural network with 2D chemical descriptors, where missing in vitro features were replaced with in 

silico values. Chemprop single-task model (Chemprop ST) produced equivalent results (see Table S1).  

The model achieved a good performance on the temporal test set of 312 compounds, with R2=0.55 

and RMSE=0.46. The experimental error is estimated at 0.43 (in logit-transformed space). The RMSE 

of the model is approaching level of experimental error. The scatter plot of predicted versus observed 

values for logit-transformed F is shown in Figure 2. 65% and 84% of compounds are predicted within 
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2- and 3-fold error, respectively. The performance of the model makes it well-suited to help decision 

making in early drug discovery. To compare to the published results, Schneckener et al. reported that 

a model for oral bioavailability in rats achieved R2 = 0.18 and RMSE = 1.04 (in the log-transformed 

space); the model, based on ∼1900 compounds, utilized a deep neural network approach and a 

chemical structure as the input (converted to descriptors using a prebuilt neural network). 

Figure 2. Predicted versus observed values for logit(F) on the test set for predictions made by Alchemite (replace) model. The 
identity line is solid black line.  

3.1.3. Clearance model 

Clearance is one of the most challenging parameters to optimise in drug discovery. Low clearance is 

desired for a drug candidate to achieve acceptable duration of target engagement. The best model for 

CL was produced by graph convolutions neural network method Chemprop applied in a single task 

setting (Chemprop ST), with Chemprop multi-task model (Chemprop MT) producing equivalent results 

(see Table S1).  The model achieved a good performance on the temporal test set of 312 compounds, 

with R2=0.63 and RMSE=0.26. The RMSE of the model is only slightly higher than the experimental 

error estimated at 0.18 (in log-transformed space). The scatter plot of predicted versus observed 

values for log-transformed CL is shown in Figure 3(A).  78% and 94% of compounds are predicted 

within 2- and 3-fold error, respectively. 

Figure 3: Predicted versus observed values for log(CL) on the test set for (A) predictions made by Chemprop ST model, (B) 
predictions made by WSM (259 compound subset of the test set). The identity line is solid black line,  ± log10(2) lines 
corresponding to 2-fold error are dashed blue lines, ± log10(3) lines corresponding to 3-fold error are dashed green lines.        
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3.1.4. Comparison with well-stirred model 

The well stirred model (WSM) is a standard tool for in vitro and in vivo extrapolation (IVIVE) in drug 

discovery and is routinely applied in decision making for compound prioritisation and progression for 

in vivo testing and also to achieve understanding of the mechanism of clearance.Error! Reference source not f

ound.-75 The WSM predicts clearance due to hepatic elimination, although the prediction is often 

assumed an approximation for the total clearance. The CL model was benchmarked against the WSM 

on the test set of 312 compounds. The predicted versus observed log-transformed CL values are 

shown in Figure 3 for both models. Predictions of the WSM are restricted by the rat liver blood flow 

(Qh=72 ml/min/kg or log10(Qh)=1.86), therefore the WSM predictions were available only for 259 

compounds of the test set.  As seen from Figure 3(B) the WSM model significantly underpredicted the 

total clearance on this set achieving R2=-0.11 and RMSE=0.44. The squared Pearson’s correlation 

coefficient, r2, between predicted and observed values is 0.51, showing that the correlation is high but 

the magnitude of the predicted values is underestimated. The CL model provided much better 

accuracy with R2=0.63 and RMSE=0.26, (r2= 0.63). Therefore, the CL model provides an accurate and 

useful tool for decision making in early discovery to guide compound prioritisation and selection. Also 

the CL model is not restricted by the liver blood flow and can predict compounds with high clearance. 

Its application is complementary to WSM, the agreement or disagreement of predictions from both 

models can inform on the mechanism of clearance.   

3.1.5. Predicting compound PK at the point of design 

In order to test whether the models can be used at the point of design, before compounds are 

synthesized and when ADME in vitro properties are not available, the performance of Chemprop MT 

model was evaluated on the test set in the following two scenarios. First, in silico predictions were 

used instead of measured in vitro values of ADME properties as input features. In silico models for 

nine ADME and physicochemical properties included as features in the rat PK model are frequently 

updated since these properties are measured for the majority of compounds early in the lead 

discovery and optimisation process. It is likely that the test set compounds for the rat PK model were 

included in the training sets of in silico ADME models. To ensure that the test set compounds are 

completely ‘unseen’ by the model, in the second scenario, ‘old’ in silico ADME predictions were used 

instead of in vitro measurements.  ‘Old’ ADME models were built before the test set compounds were 

synthesized. The second scenario represents the model predictions for virtual compounds, at the point 

of design.  

Figure 4 shows the performance of the model for the default application when in vitro ADME values 

are used and for the two scenarios. There is a small or no increase in RMSE across all PK endpoints if 

in silico predictions are used instead of in vitro values as model input. If the ‘old’ in silico predictions 

are used, there is an increase in RMSE between 5-30% depending on the PK parameter. E.g. for CL 

endpoint, RMSE = 0.35 for ‘old’ in silico predictions in comparison with RMSE = 0.27 for in vitro ADME 

values; for bioavailability F, RMSE = 0.57 and 0.47 for ‘old’ in silico predictions and in vitro values as 

inputs, respectively. For Vss, the change in RMSE is very marginal (RMSE = 0.31 and 0.28, respectively 

for  ‘old’ in silico predictions and in vitro values as inputs).  Thus the model remains applicable and 

useful when applied at the point of design, even if predicted compound ADME properties are used as 

input. This is of much practical relevance, since now compound PK in rat can be predicted solely based 

on chemical structure, without the necessity for experimental measurements.  
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Figure 4: Performance of the Chemprop MT model on the test set utilising in vitro measurements for ADME features or 
corresponding in silico predictions. RMSE on the test set is shown when in vitro values (plum bars), in silico predictions (navy 
bars) and old in silico predictions (light blue bars) are used for ADME and physicochemical features. 

3.1.6. Confidence in predictions 

A good machine learning model provides an estimation of uncertainty in predictions as well as 

accurate predictions. The uncertainty quantification can enable detection of out-of-domain examples 

and identification of less reliable predictions. In this work, the explored algorithms that offer three 

different approaches to estimation of uncertainty. In the first approach, variability in prediction is 

captured by generating an ensemble of predictions. This approach is utilised by both deep neural 

network methods, Alchemite and Chemprop, as well as by GBoost, decision trees ensemble method. 

The second approach is inherent in Gaussian Processes, a Bayesian algorithm which is known to 

provide a useful quantification of uncertainty.64,79 The output of the Gaussian Processes is not only a 

single point prediction but a probability distribution where the mean is used as the prediction value 

and the standard deviation is the estimation of uncertainty. The third approach is conformal 

framework,47,80 utilised in CPSign algorithm based on Support Vector Machine regression. These three 

approaches for uncertainty quantification were compared on the example of CL endpoint. The quality 

of different uncertainty estimates was evaluated using two metrics: ranking-based confidence curve 

with associated quantitative measure AUCO and calibration curve with associated quantitative 

measure AUCE. The confidence curves for four different CL models are shown in Figure 5. Clearly, all 

the four confidence curves are far from the perfect ‘oracle’ curve, that is the ranking order by 

predicted uncertainty does not correspond to ranking by real error of prediction. Chemprop MT 

method curve, shown in Figure 5(B), is closest to the ’oracle’ curve and provides the best AUCO metric 

(AUCO=0.145). Both NN ensemble methods, Chemprop MT and Alchemite (replace) have better 

confidence curves than GPR or CPSign methods. The calibration curves for the four CL models are 

shown in Figure 6. For both NN methods, the uncertainty in prediction provided by the model 

significantly underestimated real uncertainty; corresponding calibration curves are far from perfect 

calibration. Addition of the aleatoric uncertainty (due to variability in experimental measurements) to 

the model uncertainty provides a better calibrated model which is defined by the total uncertainty 

(see Methods, section 2.4). Both Alchemite (replace) and Chemprop MT benefit from addition of the 

experimental uncertainty as shown in Figure 6(A) and Figure 6(B), respectively. GPR and CPSign 

models, on the other hand, produce close to perfect calibration curves, Figure 6(C-D). For GPR and 

CPSign, the addition of the experimental uncertainty was not needed, the model uncertainty 

estimation incorporates all sources of uncertainty and represents the total uncertainty. GPR technique 

estimates uncertainty using Bayesian approach, CPSign involves empirical estimation via conformal 

prediction framework. The best calibration curve is provided by GPR model with AUCE = 0.026. 
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Figure 5: The confidence curves and corresponding AUCO values for CL endpoint obtained on the test set using predictions 
and uncertainty estimates from different models - (A) Alchemite (replace), (B) Chemprop MT, (C) GPR, (D) CPSign. The oracle 
curve is a dashed black line. 

Figure 6: The calibration curves and corresponding AUCE values for CL endpoint obtained on the test set using predictions 
and uncertainty estimates from different models - (A) Alchemite (replace), (B) Chemprop MT, (C) Gaussian processes, (D) 
CPSign. The confidence curves based on the model uncertainty and the total uncertainty are red and blue lines, respectively. 
The perfect calibration curve is dashed black line. The AUCE value corresponds to the total uncertainty.  
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3.2. Models for PK curve data 

3.2.1. Accuracy of curve prediction 

Profiles of the accuracy in prediction of iv and po concentration-times are shown in Figure 7, 

summarising the performance of the model on all the test set compounds (312 compounds for iv; 279 

for po). Accuracy was evaluated using the coefficient of determination, R2, between the experimental 

data and predicted curves across all time points where both the experimental data and predictions 

were above the measurement tolerance, averaged over replicates for a given compound. The 

prediction of iv dosing curves is good, with a median R2 of 0.82 (median RMSE 0.41 log units), but the 

prediction of po dosing curves is poor, with median R2 of -0.78 (median RMSE 0.54 log units). This is 

likely to be because po PK is more complex than iv, because it is strongly influenced by additional 

mechanisms, such as intestinal absorption and first-pass metabolism. These complex relationships 

also manifest in higher variability in concentration-time curves and hence a more difficult modelling 

task. We therefore progress our analysis only of the iv dosing curves. 

Figure 7: Profiles of accuracy in prediction of PK curves, with R2 calculated for time curves for which both experimental and 
modelled values are available, averaged across replicates, for both iv dosing (A) and po dosing (B). Profiles are truncated at 
R2=-2. 

A set of typical concentration-time curves are shown in Figure 8. Some general trends are noticeable: 

earlier time points are generally predicted more accurately than later time points, which is likely to be 

due to more values falling below the measurement tolerance at later times, reducing the amount of 

precise data for the machine learning model to learn from. The uncertainties on the machine learning 

predictions are correspondingly greater at later times, providing reassurance that the uncertainty 

quantification in the model is accurately capturing both this reduction in training data and the 

increased extrapolation required due to the larger time gaps between measurements at late times. 
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Figure 8: A selection of iv and po dosing curves: experimental data is shown in light blue, including multiple replicates per 
compound, and the predicted curves are shown in dark blue, with uncertainty in prediction shown by the vertical grey lines. 
Coefficient of determination measures for the accuracy of prediction are given in each case. From the top left these curves 
show a poorly modelled iv dosing curve (A); an averagely modelled iv dosing curve (B); a well-modelled iv dosing curve (C); a 
poorly modelled po dosing curve (D); an averagely-modelled po dosing curve (E); and a well-modelled po dosing curve (F).   

3.2.2. Calculation of parameters from curves 

To enable comparison with the results in Section 3.1, PK parameters were generated from the 

predicted curves and compared to the (experimental) PK parameters used for modelling in Section 

3.1. These PK parameters had been generated from the true experimental data using a semi-manual 

process involving cleaning of the underlying data: however for all PK parameters except Vss the 

Pearson correlation between the semi-manual generation and the fully-automated generation using 

MATLAB exceeded 0.97, indicating the semi-manual process made only small differences to the PK 

parameter generation. The results for the iv curves are summarised in Table 4 along with the accuracy 

of the equivalent model predicting the PK parameters directly. AUC and clearance are predicted with 

equivalent accuracy when generating parameters from the PK curves as when predicted the PK 
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parameters directly, and Cmax  is predicted slightly more accurately when generating parameters from 

the predicted PK curves, indicating that curve prediction adds value to the analysis of PK. Arbitrary 

further parameters may also be generated from a predicted curve without requiring training of a new 

model, in contrast to direct prediction of PK parameters where a new model is required whenever the 

desired parameters change. Half-life and Vss are predicted less accurately using the curves than when 

predicted directly: this is likely to be because these parameters are sensitive to the late time behaviour 

of the curve, which, as discussed above, is less accurately captured by the model than the earlier time 

behaviour, and in the case of Vss also due to the difference between the automated and semi-manual 

methods of generating PK parameters from curve data. These results demonstrate that the machine 

learning models not only accurately predict the iv curves directly but also the derived PK parameters 

when a standard PK calculation method is used.   

Table 4: Accuracies for PK parameters derived from predictions of iv curves and direct predictions, using the Alchemite 
‘replace’ methodology in both cases 

 
Generated from 
predicted curves 

Directly predicted 

PK parameter R2 RMSE R2 RMSE 

AUC IV 0.54 0.29 0.56 0.29 

CL 0.54 0.29 0.57 0.28 

Cmax IV 0.46 0.21 0.42 0.23 

t1/2 IV 0.30 2.10 0.39 1.93 

Vss 0.28 0.34 0.45 0.30 

4. CONCLUSIONS 

In this work we built the models for prediction of in vivo rat PK parameters from chemical structure 

representations and experimentally measured ADME properties. We also performed evaluation of 

multiple machine leaning algorithms and approaches to missing data imputation.  

The models are based on a dataset of over 3,000 diverse compounds from multiple drug discovery 

projects for various therapeutic applications, measured in the same lab using single assay post-

intravenous and oral dosing. The input experimental features of the models include ADME and 

physicochemical properties describing compounds lipophilicity, solubility, permeability, intrinsic 

metabolic clearance, and plasma protein and hepatocyte binding. For the chemical structure 

representation we explored graph convolutional neural networks that encode molecule chemical 

graph structure, 1D and 2D molecular property descriptors and signature descriptors. We applied 

state-of the-art AI approaches, such as graph convolutional neural network Chemprop and deep 

learning technology Alchemite, as well as traditional machine learning algorithms such as Gaussian 

Processes, Support Vector Machines and Gradient Boosting Tree ensembles. Because some of the 

experimental ADME data is missing in the dataset and to allow for such situations for future 

predictions, we investigated two data imputation approaches – the Alchemite algorithm and the 

‘replace’ approach (utilisation of in silico predictions for ADME properties generated by internal global 

models in the absence of experimental data). We observed that models using the ‘replace’ approach 

generally outperformed models using Alchemite imputation. In silico models trained on a large set of 

ADME data gave more accurate outcomes than using imputation within a smaller dataset. Among the 

models using the ‘replace’ approach, different machine learning techniques resulted in models of 

similar accuracy. The neural network algorithms Alchemite and Chemprop yielded the best performing 
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models for the majority of endpoints, with the traditional machine learning algorithms following 

closely in performance.   

Models with good accuracy were achieved for the most important endpoints – clearance (CL), oral 

bioavailability (F) and volume of distribution (Vss).  The model for CL, one of the most important and 

challenging parameters to optimise in drug discovery, achieved a good performance with R2=0.63 and 

RMSE=0.26 (in log units). Furthermore, we benchmarked this model against the WSM which is 

routinely applied in decision making for compound prioritisation. On the test set, the model, 

predicting total in vivo clearance, achieved much higher accuracy with R2=0.63 versus R2=-0.11 for the 

WSM however it should be noted that WSM only estimates hepatic metabolic clearance. Therefore, 

the CL model provides an accurate and useful tool for decision making in early discovery, and being 

able to predict values higher than the liver blood flow, it complements current DMPK tools used for 

PK prioritisation. The model for oral bioavailability achieved R2=0.55 and RMSE=0.46 (in log units), 

with RMSE approaching the level of experimental error in the data estimated at 0.43. Overall, good 

accuracy models were achieved for all the endpoints, except for Cmax iv,  t1/2 iv and t1/2 po. We also 

demonstrated that the models can be used at the point of design, before compounds are synthesized 

and before ADME in vitro properties become available; we observed relatively small decrease in the 

accuracy.   

As well as directly predicting in vivo rat PK parameters we built models of concentration-time profiles 

enabling the prediction of concentration scaled by dose at any time point. The accuracy of PK curves 

prediction for intravenous dosing is good (the median of individual curve R2 equals 0.82), but the 

prediction of curves with oral dosing is poor, perhaps due to higher variability in oral dosing curves 

data. PK parameters estimated from predicted intravenous curves are slightly less accurate overall 

than those predicted by the models directly. 

The models provide a powerful way to guide the design of molecules with optimal PK profiles, to 

enable the prediction of virtual compounds, and to drive prioritisation of compounds for in vivo assays. 

Furthermore, the developed AI approach is a stepping stone for the prediction of human PK, ultimately 

leading to the design of molecules with a desired multi-objective profile early in drug discovery, which 

will increase efficiency and reduce compound attrition. 

ABBREVIATIONS 

ADME absorption, distribution, metabolism, and excretion 
AI artificial intelligence 
ARD automatic relevance determination 
AUC area under the concentration–time curve 
AUCO area under the confidence-oracle error 
AUCE area under the calibration error curve 
CL clearance 
Cmax the maximum plasma concentration 
D-MPNN directed message passage neural network framework 
DMSO dimethyl sulfoxide 
EDTA ethylenediaminetetraacetic acid 
F oral bioavailability 
GBoost gradient boosting regression 
GPR Gaussian processes regression 
HPMC hydroxypropyl methylcellulose 
iv intravenous (administration) 
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IVIVE in vitro to in vivo extrapolation 
LC-MS/MS liquid chromatography–tandem mass spectrometry 
LogD base-10 logarithm of distribution coefficient 
LogP base-10 logarithm of partition coefficient 
MT multitask 
NCA noncompartmental analysis 
NN neural network 
PBPK physiologically based pharmacokinetics 
PK pharmacokinetics 
pKa negative base-10 logarithm of the acid dissociation constant 
po oral (administration) 
QSAR quantitative structure–activity relationship 
QSPR quantitative structure–property relationship 
RBF radial basis function 
ReLU rectified linear unit 
RMSE root mean squared error 
R2 coefficient of determination 
SMILES simplified molecular input line entry system 
ST single-task 
SVM support vector machine 
t1/2 half-life 
Vd or Vss volume of distribution 
WSM well-stirred mode 
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