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ABSTRACT
We perform molecular dynamics simulations to model density as a function of temperature for 74 alkanes with 5–10 carbon atoms and
non-equilibrium molecular dynamics simulations in the NVT ensemble to model the kinematic viscosity of 10 linear alkanes as a function
of molecular weight, pressure, and temperature. To model density, we perform simulations in the NPT ensemble before applying correction
factors to exploit the systematic error in the SciPCFF force field and compare the results to experimental values, obtaining an average absolute
deviation of 3.4 g

l at 25 ○C and of 7.2 g
l at 100 ○C. We develop a sampling algorithm that automatically selects good shear rates at which

to perform viscosity simulations in the NVT ensemble and use the Carreau model with weighted least squares regression to extrapolate
Newtonian viscosity. Viscosity simulations are performed at experimental densities and show an excellent agreement with experimental
viscosities, with an average percent deviation of −1% and an average absolute percent deviation of 5%. Future plans to study and apply the
sampling algorithm are outlined.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0004377., s

I. INTRODUCTION

Alkanes are of great interest to both the academic community
and a large number of scientists and engineers using them in indus-
try. Their chemical simplicity makes them an ideal testing ground
for applications of novel computational methods in studying phys-
ical properties of complex fluids. In industry, understanding alka-
nes and their properties is essential to produce superior oil and gas
products.

One of the most important properties of alkanes is kinematic
viscosity, which is a measure of their flow properties. However, the
viscosity of pure alkanes is still poorly understood. While many vis-
cosity measurements of mixtures are made in industrial laboratories
on a daily basis, the viscosity of only about 20 pure alkanes has
been published in the academic literature, and difficulties in sepa-
ration of different isomers beyond dodecane prevent engineers and

scientists from making measurements of the viscosity of large alka-
nes. Consequently, several theoretical and computational methods
have been developed to investigate alkanes’ viscosity variation with
molecular structure, temperature, and external pressure. For exam-
ple, De La Porte and Kossack modeled the viscosity of long chain
n-alkanes with a model motivated by the free volume theory;1 Riesco
and Vesovic used a hard sphere model to predict the viscosity of
similar systems;2 and Novak modeled the viscosity of alkanes with a
corresponding states model.3 Modern statistical methods have also
been used to model the viscosity of alkanes. Santak and Conduit
modeled the kinematic viscosity of n-alkanes with a neural network
that can make predictions on sparse datasets;4 Suzuki et al. utilized
fully connected neural networks to model viscosity as a function of
temperature of various organic compounds,5 while Hosseini et al.
used a neural network and a hard sphere model to model similar
systems.6
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Equilibrium molecular dynamics (EMD), frequently applied
to model the viscosity of light alkanes, is another popular com-
putational method. Cui et al. modeled the viscosity of hexade-
cane, tetracosane, and decane,7 and compared molecular and atomic
formalisms for EMD simulations of decane;9 Singh and Payal et
al. modeled the viscosity of hexadecane with several force fields;8

Zhange and Ely modeled the viscosity of alkane systems and alco-
hols,10 while Kondratyuk modeled the viscosity of triacontane.11

Furthermore, Kioupis and Maginn modeled the viscosity of a hex-
ane/hexadecane mixture12 and determined the viscosity number
in addition to investigating viscosity variation with the pressure
of three distinct poly-α-olefins,13,14 while Mundy et al. predicted
the viscosity of n-decane, n-hexadecane, 6-pentylundecane, 7,8-
dimethyltetradecane, 2,2,4,4,6,8-heptamethylnonane, n-triacontane,
and squalane,15 and determined the pressure-viscosity coefficient of
decane.16

Nevertheless, neither the semi-analytical methods, the mod-
ern statistical methods, nor the EMD have been certified to reliably
model the viscosity of all alkanes. Semi-analytical methods do not
possess enough sufficient predictive power to be judiciously extrap-
olated to alkanes outside of the training set, which usually comprises
a limited set of light alkanes. Modern statistical methods possess
greater extrapolative power than their semi-analytical counterparts,
yet their utility is still limited by the lack of experimental data.
EMD can in principle be used for all alkanes, but because of slow
relaxation of the stress–stress autocorrelation function7,17 for larger
molecules,18 it is recommended to primarily use it to model low
viscosity molecules.18

Another physics based simulation method that has gained
momentum in the past several decades is the non-equilibrium
molecular dynamics (NEMD),19 in which shear is applied to a
molecular system, usually at fixed temperature and volume. A
molecular dynamics simulation is performed at several shear rates,
and the shear rate profile of the kinematic viscosity is then extrapo-
lated to Newtonian viscosity. In addition to applying EMD, Kioupis
and Maginn also used NEMD to model the viscosity of the hex-
ane/hexadecane binary mixture12 and of three poly-α-olefins,13,14

while Mundy et al. utilized NEMD to study the viscosity of decane20

and several large branched alkanes.15 Cui et al. used NEMD to
model the viscosity of decane at 25 ○C, hexadecane at 27 ○C and
50 ○C, tetracosane and hexylnonadecane at 60 ○C, and squalane at
39 ○C and 99 ○C;21 McCabe, Pan, and Evans modeled the viscosity of
decane;16 Liu et al. modeled the viscosity of squalane and 1-decene-
trimer;22 Daivis and Evans compared NPT and NVT ensembles to
model viscosity of decane;23 Hess compared a variety of EMD and
NEMD methods when modeling viscosity of decane;24 Cho, Jeong,
and Buig modeled the viscosity of polymer melts;21 Yang, Pakkanen,
and Rowley determined the viscosity index of various lubricant size
molecules,25 as well as of several small alkane mixtures;26 Liu et al.
determined a pressure-viscosity coefficient of a 1-decene-trimer;27

Allen and Rowley compared different force fields to model the vis-
cosity of small alkanes,28 while Khare, de Pablo, and Yethiraj mod-
eled the viscosity of hexadecane, docosane, octacosane, and 5,12-
dipropyl-hexadecane,29 and Moore, Cui, Cochran, and Cummings
modeled the viscosity of C100.30

However, despite its past success in modeling the viscosity
of some alkanes, the contemporary NEMD approach still suffers
from three pitfalls. First, any viscosity simulation result carries a

systematic error from the force field that determines the motion
of atoms and molecules. Second, to perform NEMD simulations
at accurate external conditions, the density of the alkane of inter-
est needs to be either experimentally known or accurately modeled
with molecular dynamics. Despite possessing more experimental
data for density than for viscosity, the density of most alkanes is
experimentally unknown, and while molecular dynamics simula-
tion results are frequently used to replace experimental values, they
need to be in close agreement with true values to be confidently
applied as state points in NVT simulations; otherwise, simulations
are performed at a wrong external pressure and viscosity simu-
lation results will carry a large systematic error due to viscosity’s
pressure dependence. Finally, the reliability of viscosity simulations
decreases, while uncertainty in viscosity simulation results increases
with the decrease in the shear rate, making direct identification of
Newtonian viscosity difficult, with its accurate extrapolation depen-
dent on performing the simulations at appropriate shear rates. Cur-
rently, no computational method is capable of systematically and
automatically selecting good simulation shear rates for any alkane
at arbitrary external conditions.

In this manuscript, we present two computational techniques
that enhance the current NEMD method. First, we split alkanes into
several groups and apply correction factors to each simulation result
to correct errors in density predictions. Second, we develop a sam-
pling algorithm that automatically samples good shear rates and
apply the weighted least squares regression to extrapolate Newto-
nian viscosity. In Sec. II, we present the simulation methodology,
and in Sec. III, we model the liquid density of small linear, single-
branched, and double-branched alkanes, and the kinematic viscosity
of n-alkanes as a function of molecular weight, temperature, and
pressure. To model viscosity, we perform simulations at experimen-
tal density values to directly assess the performance of the sampling
algorithm. Finally, in Sec. IV, we succinctly summarize our work
and outline the plans for future development and applications of
methods presented in the foregoing Sec. II.

Experimental data for density and viscosity were obtained
from the Thermodynamics Research Center (TRC) Thermodynam-
ics Table thermodynamic tables,31 with additional viscosity data
collected from several research papers.32–34 Input files for sim-
ulations are prepared in the Materials and Process Simulation
(MAPS) platform (https://www.scienomics.com/) and performed
in the Large-scale Atomic/Molecular Massively Parallel Simula-
tor (LAMMPS).35 To compare simulations to experiments, we use
the average absolute deviation (∣Δ∣) for density and percent error
(Δ%) together with the absolute percent error (|Δ%|) for viscos-
ity, chosen for their interpretability and widespread use in the
literature.

II. SIMULATION DETAILS
Molecular dynamics is a computational simulation technique

in which empirically parameterized force fields determine the
interactions and govern the equations of motion for atoms and
molecules. Due to relative simplicity in performing simulations for
diverse physical systems rather than experimentally synthesizing
them, molecular dynamics can provide predictive capability and
novel insights into the properties of physical systems that have not
yet been experimentally produced.
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In this section, we describe simulation techniques implemented
to model liquid density and kinematic viscosity of alkanes. In Sec. II
A, we outline the density simulation procedure, and in Sec. II B,
we describe data blocking, which enables us to accurately determine
uncertainty in simulated physical quantities. Then, in Sec. II C, we
introduce simulation details to calculate viscosity, and in Sec. II D,
we describe a sampling algorithm that automatically identifies and
samples the shear rates at which to perform the simulations.

A. Molecular dynamics density simulations
To model density, molecular dynamics simulations are per-

formed in the NPT ensemble to simulate real experimental condi-
tions. Simulation input files are prepared by building a molecule in
MAPS, optimizing its geometry, and applying a SciPCFF force field,
which is a Scienomics (https://www.scienomics.com/) implementa-
tion of the polymer consistent force field (PCFF)36 with condensed-
phase optimized molecular potentials for atomistic simulation stud-
ies (COMPASS)37 parameters. Next, we build a cubical unit cell
with a side length of 40 Å and density of 800 g

l at the simulation
temperature before applying periodic boundary conditions. The cell
geometry is then optimized by minimizing its energy for 500 time
steps with a conjugate gradient to yield the best simulation initial
conditions.

We apply a 12 Å cutoff without smoothing to the force field and
tail corrections to the van der Waals interactions. For the Coulomb
interaction, we use a particle mesh, a precision of 0.0001, and a
dielectric constant of 1, but do not apply a cutoff to it. To keep
the system at a constant temperature and pressure, we implement
a Nose–Hoover thermostat/barostat with a 10 fs temperature damp-
ing and a 350 fs pressure damping. We perform simulations for 1 ns
with a time step of 1 fs and take a volume measurement taken every
1000 time steps. Equations of motion are integrated with the veloc-
ity Verlet algorithm. Simulations could be sped up at the potential
expense of lower simulation accuracy by using a multi-step algo-
rithm or applying constraints, but here we focus on enhancing the
existing methods with improved sampling of shear rates and defer
further optimization to future work.

To calculate the mean value in density and its uncertainty, first
30 000 time steps are discarded to take the measurements only after
the system is equilibrated (Fig. 1). From the subsequent time steps,
the expected value of density is calculated as a ratio of cell mass and
mean cell volume.

B. Data blocking
Since the motion of atoms and molecules during the molecular

dynamics simulations is deterministic, consecutive measurements of
physical quantities are correlated, which results in underestimating
their uncertainty.

To accurately determine the uncertainty in the property of
interest, we use data blocking.38,39 In data blocking, consecutive
measurements are first assembled into blocks of equal size. Next, the
mean of each block is taken as its representative value. The uncer-
tainty in the property of interest is calculated as a standard devia-
tion in the mean in the blocked set. To obtain an actual value of
uncertainty, the blocking procedure is performed iteratively until the
uncertainty reaches its maximum. In this manuscript, the number of
data entries is halved with each blocking round.

FIG. 1. Volume vs simulation time for density of 4-ethyl-4-methylheptane at 25 ○C
for first 150 ps of the simulation. V(t = 0) = 64 000 Å3 and is not shown since it
is a guess system volume. System equilibrates after approximately 25 000 time
steps, but we conservatively consider volume measurements only after 30 000
time steps.

We illustrate the data blocking procedure by determining the
uncertainty in the density of 4,4-dimethyl-heptane at 100 ○C (Fig. 2),
which arises from the expansion and contraction of the simulation
cell. In this example, volume measurements become uncorrelated
after five blocking rounds (highlighted by a blue dot with error bars
in Fig. 2).

C. Details of molecular dynamics viscosity
simulations

Molecular dynamics is frequently employed to simulate the
Couette flow and determine the viscosity of a liquid. To model vis-
cosity, a system of alkane molecules in the liquid phase is trapped
between two parallel infinite plates. Shear along the xy plane is then
applied to one of the plates to make it move with a constant speed
relative to the stationary plate. Consequently, alkane molecules
move with the horizontal velocity component proportional to their
vertical distance from the other plate.

FIG. 2. Applying data blocking to determine the uncertainty in the density of
4,4-dimethyl-heptane at 100 ○C. Dots represent expected values of uncertainties,
while bars represent their uncertainties.
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TABLE I. Viscosity simulation time as a function of shear rate.

log(γ̇) (s−1) Tsim (ns)

10.30–12.00 1
10.10–10.30 2
9.35–10.10 4
<9.35 8

Preparing input files to perform viscosity simulation comprises
the same steps to perform density simulations but with seven adjust-
ments. First, the density of the simulation cell is either the experi-
mental or the average predicted density of alkane at the temperature
of interest. Second, the xy component of the stress tensor (Pxy) is
recorded every 100 time steps. Third, since uncertainty in kinematic
viscosity is inversely proportional to the shear rate, simulation time
varies as a function of the shear rate at which the simulation is per-
formed (Table I) to improve the confidence in viscosity predictions.
Fourth, as the system is not kept at a constant pressure, no barostat is
applied. Fifth, simulations are performed in the NVT ensemble with
the SLLOD40 equations of motion and the Lees–Edwards41 bound-
ary conditions. Sixth, the velocity of each atom is rescaled during the
simulation if the system temperature deviates from the initial tem-
perature by more than 100 K. Finally, atoms do not exert a force on
each other if the distance between them is smaller than 0.2 distance
units.

In experiments, viscosity measurements are performed at con-
stant pressure. However, since density is also constant during viscos-
ity experiments, use of the NVT ensemble is physically justified. Sim-
ulations can also be performed in the NPT ensemble, but we decide
to perform them in the NVT ensemble since “barostats (which
alter positions through volume changes) greatly affect the dynam-
ics of the system”18 and it is more commonly applied than the NPT
ensemble.

The expected value of kinematic viscosity at shear rate γ̇i is
calculated as the ratio of the negative expected value of the xy com-
ponent of the viscous stress tensor and a product of the simulation
shear rate and liquid density,

η(γ̇i) =
−E[Pxy]

ργ̇i
, (1)

where E, ρ, and γ̇i denote the expectation operator, alkane’s density,
and shear rate. The uncertainty in kinematic viscosity is calculated
as the ratio of the uncertainty in the xy component of the viscous
stress tensor and a product of shear rate and liquid density,

δη(γ̇i) =
δPxy
ργ̇i

, (2)

where δPxy denotes the uncertainty in the xy component of the
shear stress tensor and we have neglected the uncertainty in den-
sity since typically δρ

ρ ≪
δPxy
Pxy

. The uncertainty in kinematic viscosity
can in principle be reduced by increasing the simulation time, but
its ultimate minimum is in practice limited by its dependence on the
reciprocal shear rate.

To calculate Newtonian viscosity, the viscosity’s shear rate
profile is fitted to the Carreau model,

η(γ̇) = η∞ + (η0 − η∞)[1 + (λγ̇)2]
n−1

2 , (3)

where η0 and η∞ are the values of upper and lower Newtonian
plateaus, n is a nonnegative parameter that determines the shape
of the Carreau curve between two plateaus, and λ determines the
range of shear rates between the two plateaus. To calculate Newto-
nian viscosity, we minimize the weighted least squares (WLS) cost
function

C(η0,η∞,n, λ) =∑
i

[ηi − η(γi)]2

δη2
i

, (4)

where ηi is the simulation result of kinematic viscosity at γi, η(γi)
is the Carreau model viscosity at shear rate γi, and δηi is the uncer-
tainty in kinematic viscosity. The choice of cost function ensures that
we assign higher weights to viscosity results at higher shear rates,
with a larger signal to noise ratio to ensure a more reliable extrap-
olation of Newtonian viscosity. We minimize the WLS cost func-
tion with the Levenberg-Marquardt algorithm42,43 and the initial
parameter guesses of

{η0,η∞,n, λ} = {max{η}, min{η}, 1,
1

min{γ̇}}, (5)

where {n} and {γ} are the set of viscosity simulation results and shear
rates at which we perform the simulations.

D. Identifying good shear rates
The ratio of speeds due to shear and due to particle interac-

tions is proportional to the shear rate, resulting in a low signal to
noise ratio for viscosity simulations performed at low shear rates.
For a fixed shear rate, this ratio is smaller for larger temperatures
due to smaller relative contribution of the kinetic term to the shear
stress tensor, for heavier molecules due to inverse relation between
speed at a fixed temperature and molecular mass, and at higher
pressures due to an increased virial term contribution arising from
closer proximity of molecules at a fixed volume. Therefore, direct
identification of Newtonian viscosity with NEMD is challenging,
while poor statistics at low shear rates becomes an obstacle in its
accurate extrapolation. The range of good shear rates at which to
perform viscosity simulations is a priori unknown, and while the
authors of previous NEMD studies have performed their simula-
tions at reasonable shear rates, they have selected them manually.
Currently, an algorithm to automatically sample good shear rates
for an arbitrary alkane at any temperature and pressure does not
exist.

To automatically sample good shear rates for an arbitrary
alkane, we first run a simulation at the largest shear rate γ̇0. Next,
we successively decrease the shear rate by a constant x > 1 and per-
form simulations at two smaller shear rates γ̇1 = γ̇0

x and γ̇2 = γ̇0
x2 .

Then, to assess the vicinity to the upper Newtonian plateau, we cal-
culate the probability that the shear rate profile of kinematic viscosity
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FIG. 3. Schematic of the algorithm applied to determine appropriate shear rates.

between two smallest shear rates is concave up, P[η(γ̇2) − η(γ̇1)
> η(γ̇1) − η(γ̇0)], and compare it to a constant C ∈ [0, 1] under the
assumption that kinematic viscosity at each shear rate is normally
distributed under its mean and the uncertainty. If P[η(γ̇2) − η(γ̇1)
> η(γ̇1)− η(γ̇0)] > C, we again decrease the shear rate by a constant
x and run a simulation at γ̇3 = γ̇2

x before we determine the probabil-
ity that viscosity’s shear rate profile between γ̇1 and γ̇3 is concave up.
The process of performing the simulations at successively smaller
shear rates that are a constant fraction of the previous shear rate
is repeated until P[η(γ̇n) − η(γ̇n−1) > η(γ̇n−1) − η(γ̇n−2)] < C.

FIG. 4. Kinematic viscosity plotted against the shear rate for octadecane at 50 ○C.
The shear rate is plotted on the logarithmic scale. Orange dots represent the sim-
ulation results at high shear rates, the light green dot represents the simulation
result at the lowest shear rate, while red dots represent the simulation results at
intermediate shear rates.

To avoid performing simulations with a low signal to noise ratio,
we do not perform the simulations at a smaller shear rate. Instead,
we perform three more simulations at shear rates uniformly spaced
between two smallest shear rates, γ̇n+1 = γ̇n+γ̇n−1

2 , γ̇n+2 = γ̇n+1+γ̇n
2 , and

γ̇n+3 = γ̇n+1+γ̇n−1
2 . In this manuscript, we use γ̇0 = 1012s−1, x = 3,

and C = 0.95 to cover a large range of shear rates with a relatively
small number of simulations and continue performing simulations
at smaller shear rates only if we are 95% confident that viscosity’s
shear rate profile in the region of interest is concave up. A flow
chart that concisely summarizes the sampling algorithm is shown
in Fig. 3.

We illustrate the sampling algorithm in modeling the kinematic
viscosity of octadecane at 50 ○C (Fig. 4). The shear rate is consecu-
tively decreased by a third down to log(γ̇) = 9.14, when η = 3.39
± 0.29 cSt. The kinematic viscosity at two immediate smaller shear
rates (log(γ̇) = 9.61 and log(γ̇) = 10.09) is simulated and found to
be 2.63 ± 0.13 cSt and 1.52 ± 0.05 cSt, respectively. Since P[η(109.14)
− η(109.61) > η(109.61) − η(1010.09)] = 0.1847, three more simulations
are performed at log(γ̇) = 9.44, log(γ̇) = 9.32, and log(γ̇) = 9.54,
and data are fitted to the Carreau model with a WLS regression
(Sec. II C).

While neither simulation has been performed at a low enough
shear rate to directly identify the upper Newtonian plateau, we have
extrapolated a Newtonian viscosity of 3.24 cSt, an excellent agree-
ment with the experimental value of 3.23 cSt reported in the work of
Caudwell et al.33

III. RESULTS AND DISCUSSION
With the molecular dynamics simulation technique in place,

we are well-positioned to determine the liquid density and
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TABLE II. Summary of uncertainty as a function of molecular weight. NC, Nmol, and
E[δρ] denote the number of carbon atoms, the total number of simulation results for
molecules with the NC number of carbon atoms, and the mean value of the uncertainty
in the density of alkanes with a fixed number of carbon atoms, respectively.

NC Nmol E[δρ]( gl )

6 10 0.69
7 16 0.51
8 26 0.57
9 24 0.58
10 32 0.50

kinematic viscosity of alkanes. First, we model density and compare
to experimental values before repeating the process for kinematic
viscosity.

In Sec. III A, we model the density of liquid alkanes with 5–10
carbon atoms, and in Sec. III B, we model the kinematic viscosity
of hexane, heptane, octane, nonane, decane, undecane, dodecane,
tridecane, and tetradecane at 20 ○C; tridecane at 60 ○C as a func-
tion of pressure; and octane, dodecane, and octadecane as a function
of temperature. To directly evaluate the performance of the sam-
pling algorithm, we perform viscosity simulations at experimental
densities (Tables VII–XI).

A. Density
We perform molecular dynamics simulations in the NPT

ensemble for 74 alkanes at 25 ○C and 34 alkanes at 100 ○C and
compare to the experimental data from the TRC Thermodynamic
Tables.31

To check the reliability of NPT simulation results, we investi-
gate the average pressures obtained in the NPT simulations. Dur-
ing a typical simulation, pressure varies between −1500 atm and
1500 atm. However, after averaging within a simulation, pressure
varies between −30 atm and 30 atm, with statistical uncertainty
obtained through data blocking (Sec. II B) from between 20 atm
and 30 atm and the atmospheric pressure within the 95% confidence
interval.

Next, we analyze the statistical uncertainty in density
simulations. First, we compare uncertainties at two different

TABLE III. Summary of group discrepancies. At both temperatures, the number of
molecules and the average absolute deviation and standard deviation in discrepancy
are presented. Since the signs of discrepancies are consistent for each group, for all
the groups but the linear group, Δ = ∣Δ∣, with Δ = −∣Δ∣ for linear alkanes.

Nmol ∣Δ25○C∣ Nmol ∣Δ100○C∣
Group 25 ○C ( gl ) 100 ○C ( gl )

Linear 5 3.6 5 2.5
Methyl series 14 6.1 7 9.4
2,2-Dimethyl 5 26 3 34
Other dimethyl 28 15 12 22
Methyl-ethyl series 14 7.9 4 20
Other 8 2.4 3 5.2

temperatures. The average uncertainty at 25 ○C is 0.53 g
l , while at

100 ○C, it is 0.61 g
l . There is no indication that increasing the temper-

ature by 75 ○C increases the statistical uncertainty in density simula-
tion results for small alkanes. Then, we investigate the uncertainty as
a function of molecular weight (Table II) and conclude that increas-
ing the molecular weight does not increase the uncertainty in aver-
age densities for light linear, single-branched, and double-branched
alkanes.

Initially, we obtain an average absolute deviation of 11 g
l at

25 ○C and of 16 g
l at 100 ○C. To further understand the performance

of density simulations, we drill into the discrepancy between experi-
mental values and simulation results. We split the alkanes for which
we performed simulations into six groups, with each group either
a homologous series or a set of homologous series (Table III). The
discrepancy between simulations and experiment within each group
is approximately constant (Fig. 5, left), likely due to the systematic
bias in the SciPCFF force field, as the density of alkanes with fewer
branches is modeled more accurately, indicating that its parameters
for alkanes have been developed mostly from linear alkane data. For
each group apart from the linear alkanes, the average group discrep-
ancy is larger at 100 ○C than at 25 ○C, possibly due to the devel-
opment of the SciPCFF force field parameters mostly from room
temperature data.

Since viscosity simulations are in general performed at a con-
stant density, the results of NPT simulations with large discrepancies

FIG. 5. Parity plot of density results
vs experimental values before (left)
and after (right) correction factors are
applied. Orange dots denote the linear
alkane series, red dots denote the methyl
group, blue dots denote the 2,2-dimethyl
series, violet dots denote the group com-
prising all the other alkanes, light green
dots denote the ethyl-methyl group, while
the group of all the other molecules is
denoted with gray dots.
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are insufficiently accurate to be used as state points for NVT sim-
ulations. To obtain more accurate results, we subtract the value of
the average discrepancy in a group to which an alkane belongs from
the simulation result (Table III). A small average pressure variation
in simulation results justifies applying the same correction factor at
all pressures, since the isothermal compressibility factor is approx-
imately constant for the range of average pressures obtained from
simulations.44 However, since applying correction factors to simu-
lation results is a poor indication of the actual merit of applying
them, which is why we perform a leave-one-out cross validation,45

in which correction factors are calculated from all but one data entry
and applied to the remaining data entry, repeating for each entry in
a dataset.

After applying a leave-one-out cross validation, we obtain an
average absolute deviation of 3.4 g

l at 25 ○C (Fig. 5) and of 7.2 g
l

at 100 ○C, a significant improvement over the results obtained from
molecular dynamics simulations. The summary of all the results is
presented in Table IV, while the parity plot of corrected densities is
presented in the right part of Fig. 5. At 25 ○C, the model performs
the best for linear alkanes and the worst for the 2,2-dimethyl homol-
ogous series and the group of other dimethyl alkanes. At 100 ○C,
the model still performs the best for linear alkanes, but now it per-
forms the worst for the methyl-ethyl group, for which the average
absolute deviation is 17 g

l . Such a large discrepancy arises from a
large spread in discrepancies in original simulation results across the
ethyl-methyl group. A full list of results can be found in Tables V
and VI.

Once liquid density at two temperatures is calculated, it is
straightforward to determine it at any other temperature in the
liquid phase due to its linear dependence on temperature.

B. Viscosity
We now study the kinematic viscosity of linear alkanes, first

as a function of molecular weight, then as a function of pressure,
and finally as a function of temperature. Linear alkanes serve as a
case study for evaluating the reliability and accuracy of the sampling
algorithm for two reasons. First, they are the homologous alkane
series with readily available experimental data. Second, the system-
atic error in the SciPCFF force field for linear alkanes is likely small
compared to the systematic error for the other homologous series.
Consequently, the discrepancy between the simulations and the
experiments arises primarily from the remaining noise in viscosity
simulations.

TABLE IV. Summary of discrepancies after applying the correction factors and run-
ning a leave-one-out cross validation. At both 25 ○C and 100 ○C, the number of
molecules and absolute average deviation are presented.

Group Nmol 25 ○C ∣Δ25○C∣( gl ) Nmol 100 ○C ∣Δ100○C∣( gl )

Linear 5 0.93 5 0.84
Methyl series 14 2.1 7 4.3
2,2-Dimethyl 5 5.0 3 5.4
Other dimethyl 28 4.9 12 9.6
Methyl-ethyl series 14 3.1 4 17
Other 8 1.4 3 2.8

We first study viscosity as a function of molecular weight
and model kinematic viscosity of hexane, heptane, octane, nonane,
decane, undecane, dodecane, tridecane, and tetradecane at 20 ○C
at atmospheric pressure and compare the results to the experi-
mental values from the TRC Thermodynamic Tables31 (Table VII).
Simulations accurately reproduce the experimental data, with an
average percent error of 5% (Fig. 6) and the absolute percent
error of 6.4%. Simulations are the least accurate for heptane and
tetradecane, with the percent errors of 13% and −10%, while
experimental values for all the alkanes apart from tetradecane
are within the 95% confidence interval. Simulations systemati-
cally underestimate the kinematic viscosity of decane and heavier
alkanes, which we attribute to the small systematic error in the
SciPCFF force field that also underestimated the density of linear
alkanes.

To further evaluate the performance of the sampling algorithm,
we compare the accuracy of our prediction for decane to the pre-
diction made in the work of Cui et al.46 at 25 ○C. Our prediction
of 1.13 ± 0.08 cSt is in excellent agreement with the experimental
value of 1.24 cSt and compares favorably with their prediction of 0.84
± 0.11 cSt against the experimental value of 1.17 cSt.

Second, we explore the variation of viscosity with pressure,
with tridecane at 60 ○C as a case study and the experimental data
from the work of Daug et al.34 (Table VIII). Simulation results are
in excellent agreement with experiments (Fig. 7), with an average
percent error of 2%, an absolute percent error of 4%, and the least
accurate prediction at 100 MPa, with a percent error of 8%. All
the experimental values are within a 95% confidence interval of our
predictions.

Next, we calculate the pressure-viscosity coefficient, which is a
measure commonly used in industry to assess the pressure gradient
of alkanes’ viscosity at a fixed temperature T. The pressure-viscosity
coefficient appears in the exponent of the following equation:

η(p,T) = ηatm(T)eαp, (6)

where ηatm(T) is a value of kinematic viscosity at atmospheric pres-
sure and the temperature of interest, and p is the pressure. An exper-
imental value of the pressure-viscosity coefficient is 0.008 86 MPa−1,

FIG. 6. Viscosity of linear alkanes at 20 ○C. Blue dots present experimental data,
while orange dots represent molecular dynamics predictions with accompanying
statistical uncertainty.
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FIG. 7. Viscosity of tridecane at 60 ○C as a function of pressure. Blue dots present
experimental data, while orange dots represent molecular dynamics predictions
with accompanying statistical uncertainty.

while the simulations predict 0.008 69 MPa−1. A percent error of
only −2% and the absolute percent error of 4% further confirm that
we can accurately capture the variation of alkane’s viscosity with
pressure.

Third, we study the variation of viscosity with temperature,
focusing on the viscosity of octane, dodecane, and octadecane. Sim-
ulations are performed at temperatures at least 20 ○C above alkanes’
melting points to avoid the crystallization of the cell.

We first model the viscosity of octane (Table IX) and dodecane
(Table X), whose experimental viscosity’s temperature profile was
obtained from the work of Caudwell et al.32,33 Simulation results are
in excellent agreement with experiments, with the average percent
error of −0.4% for octane and of 4% for dodecane, and the absolute
percent error of 4% and of 8% for dodecane (Fig. 8). All the experi-
mental values lie within the 95% confidence interval of mean simu-
lation predictions apart from the octane results at 25 ○C and 100 ○C
and the dodecane results at 200 ○C, primarily due to an excellent fit
of viscosity’s shear rate profile to the Carreau model.

FIG. 8. Viscosity of octane, dodecane, and octadecane as a function of tempera-
ture. Blue, green, and gray dots represent the experimental values of their viscos-
ity, while orange, red, and purple dots with accompanying statistical uncertainty
represent the values predicted by the NEMD simulations.

FIG. 9. Parity plot showing experimental viscosity values against the NEMD
simulation results.

Next, we study the viscosity of octadecane, whose experimental
values were obtained from the work of Caudwell et al.32 Simulations
are in excellent agreement with experimental values (Fig. 8), with an
average deviation of 0.4% and the absolute average percent error of
4%. Viscosity at 100 ○C was simulated with the smallest accuracy,
with a 6% percent deviation, while all the results apart from the one
at 200 ○C are within a 95% confidence interval. The longest total sim-
ulation time to model viscosity at a fixed temperature is 36 ns, which
is only 5.14 times longer than the time spent to model the viscosity of
hexane at 20 ○C. Such a small increase in total simulation time gives
us further confidence that we can apply the sampling algorithm to
heavy alkanes without requiring excessive computational resources
like in equilibrium molecular dynamics.

Having studied the viscosity of linear alkanes as a function of
pressure, temperature, and molecular mass, we analyze the over-
all accuracy of viscosity simulations. A parity plot showing exper-
imental values against simulation results for all the alkanes stud-
ied is shown in Fig. 9. Simulations are in excellent agreement with
experiments, with an average error of −1% and the average absolute
percent error of 5%.

Then, we study the percent error in our models as a function
of the predicted viscosity to assess whether the simulations perform
equally well at all viscosities (Fig. 10). We note that the average
error fluctuates between about −10% and 10% for all the modeled

FIG. 10. Percent error for all the data as a function of viscosity simulation results.
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FIG. 11. Uncertainty in Newtonian viscosity predictions as a function of viscosity
predictions and its best linear fit δηmodel = 0.065ηmodel + 0.004.

viscosities, showing that the sampling algorithm could be success-
fully applied to heavy alkanes.

Finally, we study the statistical uncertainty in the mean predic-
tions. We observe that the uncertainty in NEMD viscosity predic-
tions increases approximately linearly as a function of predicted vis-
cosity (Fig. 11), with an R2 = 0.61 of the linear fit. The approximate
linear dependence of uncertainty on viscosity arises from uncer-
tainty in the best fit parameters’ dependence on the matrix of uncer-
tainties in kinematic viscosity at different shear rates, whose entries
are inversely proportional to the shear rate.

IV. CONCLUSION
In this manuscript, we have enhanced the existing molecular

dynamics protocol to study liquid density and kinematic viscosity
of alkanes. First, we have studied the density of alkanes with 5–
10 carbon atoms by running simulations in the NPT ensemble and
applied correction factors to simulation results to rectify the system-
atic error arising from the SciPCFF force field, obtaining an abso-
lute deviation of 3.4 g

l at 25 ○C and an absolute deviation of 7.2 g
l

at 100 ○C.
Second, we have also developed a sampling algorithm to

identify the shear rates at which to perform viscosity simula-
tions. We have utilized the sampling algorithm to study the kine-
matic viscosity of hexane, heptane, octane, nonane, decane, unde-
cane, dodecane, tridecane, and tetradecane at 20 ○C; viscosity of
tridecane at 60 ○C as a function of pressure; and viscosity of
octane, dodecane, and octadecane as a function of temperature
at experimental densities. Simulations are in excellent agreement
with experiments, with an average percent error of −1% and the
average absolute percent error of 5%. The average percent error
stays approximately constant and fluctuates about 10% in mag-
nitude as a function of viscosity, while the uncertainty in vis-
cosity predictions increases approximately linearly with increased
viscosity.

The formalism presented in this manuscript sets a solid founda-
tion to determine the density and viscosity of larger and more com-
plex alkanes. Collecting more experimental data and performing
additional molecular dynamics simulations for density would enable
us to further exploit systematic errors arising from the SciPCFF

force field, while machine learning4 can be used to predict simula-
tion results for various molecules without explicitly performing the
simulations.

The sampling algorithm that automatically determines shear
rates can straightforwardly be applied in high throughput screen-
ing, while its generality means that it can be used as a basis to study
the viscosity of other liquids with a known functional dependence
on shear rates. Mathematical properties of the sampling algorithm
and the effects of using a multi-step/constraint algorithm in simu-
lations can also be studied so that the performance of NEMD NVT
simulations approaches its optimum.
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APPENDIX: TABLES OF RESULTS

1. Density at 25 ○C

TABLE V. Results obtained from molecular dynamics simulations after correction fac-
tors in a leave-one-out cross validation are applied for density at 25 ○C. Experimental
data are obtained from the TRC Thermodynamic Tables.31

Name ρexp( g
l ) ρmodel(

g
l ) δρmodel(

g
l ) ∣Δ∣( g

l )

2,2-Dimethylbutane 644.43 651.44 0.67 7.0
2,2-Dimethylheptane 706.60 702.49 0.72 4.1
2,2-Dimethylhexane 691.11 691.47 0.40 0.35
2,2-Dimethyloctane 721.00 712.54 0.47 8.5
2,2-Dimethylpentane 669.48 674.69 0.52 5.2
Decane 726.14 727.59 0.82 1.5
Heptane 679.50 678.40 0.42 1.1
Hexane 654.89 653.67 0.41 1.2
Nonane 713.75 714.01 0.97 0.26
Octane 698.76 699.37 0.49 0.61
3-Ethylheptane 722.50 723.07 0.65 0.57
3-Ethylhexane 709.45 709.08 0.77 0.37
3-Ethyloctane 735.40 734.29 0.44 1.1
3-Ethylpentane 693.92 690.89 0.52 3.0
3,3-Diethylpentane 749.92 754.54 0.40 4.6
4-Ethylheptane 722.30 722.38 0.37 0.08
4-Ethyloctane 734.30 733.16 0.78 1.1
4-Propylheptane 731.90 732.27 0.93 0.37
2-Methylheptane 693.87 696.93 0.45 3.1
2-Methylhexane 674.34 677.72 0.38 3.4
2-Methylnonane 722.70 723.37 0.66 0.67
2-Methyloctane 709.60 711.43 0.75 1.8
2-Methylpentane 648.50 653.61 0.44 5.1
3-Methylheptane 701.73 700.21 0.37 1.5

J. Chem. Phys. 153, 014102 (2020); doi: 10.1063/5.0004377 153, 014102-9

Published under license by AIP Publishing

https://scitation.org/journal/jcp


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

TABLE V. (Continued.)

Name ρexp( g
l ) ρmodel(

g
l ) δρmodel(

g
l ) ∣Δ∣( g

l )

3-Methylhexane 682.88 682.17 0.45 0.7
3-Methylnonane 729.50 726.73 0.51 2.8
3-Methyloctane 716.70 714.95 0.42 1.8
3-Methylpentane 659.76 657.87 1.12 1.89
4-Methylheptane 700.54 700.83 0.58 0.29
4-Methylnonane 728.20 726.63 0.54 1.6
4-Methyloctane 716.30 714.70 0.53 1.6
5-Methylnonane 728.40 725.88 0.42 2.5
3-Ethyl-2-methylheptane 739.80 729.11 0.43 11
3-Ethyl-2-methylhexane 729.00 728.87 0.37 0.13
3-Ethyl-2-methylpentane 715.20 717.26 0.51 2.1
3-Ethyl-3-methylheptane 744.40 747.21 0.43 2.8
3-Ethyl-3-methylhexane 736.00 736.93 0.53 0.93
3-Ethyl-3-methylpentane 723.54 724.90 0.57 1.4
3-Ethyl-4-methylheptane 746.60 742.77 0.31 3.8
3-Ethyl-4-methylhexane 735.00 732.52 0.48 2.5
4-Ethyl-2-methylheptane 732.20 734.77 0.37 2.6
4-Ethyl-2-methylhexane 720.20 724.34 0.66 4.1
4-Ethyl-3-methylheptane 746.80 742.22 0.33 4.6
4-Ethyl-4-methylheptane 743.20 746.97 0.41 3.8
5-Ethyl-2-methylheptane 731.50 733.73 0.40 2.2
5-Ethyl-3-methylheptane 736.80 738.63 0.67 1.8
2,3-Dimethylbutane 657.00 659.81 0.65 2.8
2,3-Dimethylheptane 722.00 716.74 0.76 5.3
2,3-Dimethylhexane 708.16 703.73 0.58 4.4
2,3-Dimethyloctane 734.10 727.82 0.78 6.3
2,3-Dimethylpentane 690.81 688.19 0.43 2.6
2,4-Dimethylheptane 711.50 713.36 0.32 1.9
2,4-Dimethylhexane 696.11 701.16 0.32 5.1
2,4-Dimethyloctane 722.60 725.86 0.52 3.3
2,4-Dimethylpentane 668.23 679.09 0.47 11
2,5-Dimethylheptane 713.60 713.11 0.44 0.49
2,5-Dimethylhexane 689.37 695.62 0.52 6.3
2,5-Dimethyloctane 723.80 724.17 0.50 0.37
2,6-Dimethylheptane 704.50 714.67 0.40 10
2,6-Dimethyloctane 724.80 723.64 0.35 1.2
2,7-Dimethyloctane 719.80 719.95 0.46 0.15
3,3-Dimethylheptane 721.60 723.01 0.42 1.4
3,3-Dimethylhexane 705.95 709.36 0.50 3.4
3,3-Dimethyloctane 734.40 730.25 0.50 4.2
3,3-Dimethylpentane 689.16 704.56 0.58 15
3,4-Dimethylheptane 727.50 722.15 0.52 5.4
3,4-Dimethylhexane 715.15 708.17 0.34 7.0
3,4-Dimethyloctane 741.00 730.96 0.42 10
3,5-Dimethylheptane 716.60 717.96 1.19 1.4
3,5-Dimethyloctane 732.90 728.38 0.43 4.5
3,6-Dimethyloctane 731.50 726.47 0.39 5.0
4,4-Dimethylheptane 718.30 722.99 0.54 4.7
4,4-Dimethyloctane 731.20 732.77 0.56 1.6
4,5-Dimethyloctane 743.20 730.89 0.36 12

2. Density at 100 ○C

TABLE VI. Results obtained from molecular dynamics simulations after correction fac-
tors in a leave-one-out cross validation are applied for density at 100 ○C. Experimental
data are obtained from the TRC Thermodynamic Tables.31

Name ρexp( g
l ) ρmodel(

g
l ) δρmodel(

g
l ) ∣Δ∣( g

l )

Decane 667.70 667.99 0.32 0.29
Heptane 611.00 612.63 0.47 1.6
Hexane 581.40 579.66 0.85 1.7
Nonane 652.50 652.14 0.67 0.36
Octane 635.19 635.37 0.60 0.18
2-Methylheptane 632.00 631.69 0.52 1.7
2-Methylhexane 602.00 611.99 0.63 8.8
2-Methylpentane 574.30 580.04 0.70 4.5
3-Methylheptane 638.40 636.39 0.66 3.4
3-Methylhexane 619.00 614.50 0.65 6.0
3-Methylpentane 582.40 586.35 0.52 2.7
4-Methylheptane 639.00 635.54 0.53 4.9
3-Ethylhexane 647.00 644.06 0.66 2.9
3-Ethylpentane 621.00 625.14 0.60 4.1
4-Propylheptane 673.40 672.20 0.44 1.2
2,3-Dimethylbutane 582.50 584.21 0.74 1.7
2,3-Dimethylhexane 644.10 635.12 0.57 9.0
2,3-Dimethylpentane 626.00 627.51 0.62 1.5
2,4-Dimethylhexane 616.30 632.27 0.52 16
2,4-Dimethylpentane 601.00 605.48 0.52 4.5
2,5-Dimethylhexane 623.60 625.31 0.48 1.7
2,6-Dimethylheptane 640.00 644.74 0.42 4.7
2,7-Dimethyloctane 660.20 656.44 0.86 3.8
3,3-Dimethylhexane 646.70 640.78 1.05 5.9
3,3-Dimethylpentane 608.00 635.21 0.45 27
3,4-Dimethylhexane 658.50 639.86 0.64 19
4,5-Dimethyloctane 685.50 665.46 0.63 20
2,2-Dimethylbutane 568.30 576.37 0.75 8.1
2,2-Dimethylhexane 626.10 618.23 0.83 7.9
2,2-Dimethylpentane 601.90 601.71 0.46 0.19
3-Ethyl-2-methylpentane 657.00 638.35 0.45 19
3-Ethyl-3-methylhexane 641.00 661.82 0.43 21
3-Ethyl-3-methylpentane 663.30 648.87 0.85 14
5-Ethyl-2-methylheptane 672.70 658.79 0.60 14

3. Viscosity of linear alkanes

TABLE VII. Summary of viscosity simulations for linear alkanes at 20○. Alkane’s
name, experimental value of kinematic viscosity, simulation result, its uncertainty, and
percent error are presented.

Name ρexp( gl ) ηexp (cSt) ηpred (cSt) δηpred (cSt) Δ%

Hexane 659 0.46 0.43 0.04 −7
Heptane 684 0.60 0.68 0.08 13
Octane 703 0.78 0.78 0.04 0
Nonane 718 0.99 1.01 0.03 2
Decane 730 1.24 1.13 0.08 −9
Undecane 740 1.60 1.53 0.04 −4
Dodecane 749 2.00 1.81 0.12 −9.5
Tridecane 756 2.38 2.32 0.27 −2.5
Tetradecane 762 3.01 2.70 0.14 −10
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4. Viscosity of tridecane as a function of pressure
at 60 ○C

TABLE VIII. Results of viscosity simulations for tridecane at 60○ as a function of
pressure. Pressure, experimental value of kinematic viscosity, simulation result, its
uncertainty, and percent error are presented.

p(MPa) ρexp( gl ) ηexp (cSt) ηpred (cSt) δηpred (cSt) Δ%

0.1 728 1.33 1.38 0.16 3.8
20 743 1.67 1.67 0.06 0
40 757 2.02 2.09 0.18 3.5
60 768 2.36 2.23 0.08 −6
80 779 2.74 2.84 0.18 3.6
100 788 3.12 3.37 0.16 8.0

5. Viscosity of octane, dodecane, and octadecane
as a function of temperature

TABLE IX. Summary of viscosity simulations for octane as a function of temper-
ature. Temperature, experimental value of kinematic viscosity, simulation result, its
uncertainty, and percent error are presented.

T(○C) ρexp( gl ) ηexp (cSt) ηpred (cSt) δηpred (cSt) Δ%

−10 729 1.15 1.10 0.05 −4
0 721 0.99 1.01 0.02 2
25 699 0.73 0.68 0.01 −7
40 686 0.63 0.66 0.03 5
60 669 0.53 0.50 0.05 −6
80 652 0.45 0.48 0.10 6.7
100 635 0.39 0.38 0.003 −3
125 618 0.33 0.34 0.02 3

TABLE X. Summary of viscosity simulations for dodecane as a function of temper-
ature. Temperature, experimental value of kinematic viscosity, simulation result, its
uncertainty, and percent error are presented.

T(○C) ρexp( gl ) ηexp (cSt) ηpred (cSt) δηpred (cSt) Δ%

40 734 1.46 1.57 0.06 8
60 720 1.12 1.03 0.09 −8
80 704 0.90 0.87 0.04 −3
100 690 0.73 0.79 0.11 8.2
125 671 0.60 0.58 0.02 −3
150 651 0.50 0.54 0.03 8
175 630 0.42 0.47 0.03 12
200 609 0.36 0.40 0.02 11

TABLE XI. Results of viscosity simulations for octadecane as a function of temper-
ature. Temperature, experimental value of kinematic viscosity, simulation result, its
uncertainty, and percent error are presented.

T(○C) ρexp( gl ) ηexp (cSt) ηpred (cSt) δηpred (cSt) Δ%

50 762 3.23 3.24 0.25 0.31
75 744 2.14 2.02 0.18 −5.7
100 727 1.55 1.65 0.20 6.5
125 709 1.18 1.12 0.12 −5.1
150 691 0.93 0.96 0.05 3
175 674 0.77 0.81 0.07 5
200 656 0.64 0.63 0.04 −2
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