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Effective-range dependence of resonant Fermi gases
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A Fermi gas of cold atoms allows precise control over the dimensionless effective range, kFReff , of the
Feshbach resonance. Our pseudopotential formalism allows us to create smooth potentials with effective range,
−2 � kFReff � 2, which we use for a variational and diffusion Monte Carlo study of the ground state of a unitary
Fermi gas. We report values for the universal constants of ξ = 0.388(1) and ζ = 0.087(1), and compute the
condensate fraction, momentum distribution, and pair correlations functions. Finally, we show that a gas with
kFReff � 1.9 is thermodynamically unstable.
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I. INTRODUCTION

Cold atom gases have delivered a series of surprises and
insights, including polaron physics [1], the realization of the
Bose-Hubbard model [2], and the BEC-BCS crossover [3–5].
The development of uniform trapping potentials has en-
abled the experimental realization of particles in a box [6],
while the Feshbach resonance offers a unique level of control
of the interparticle interactions [7]. Fermi gases interacting via
zero-range contact interactions offer scale invariant physics in
the unitary limit of diverging scattering length, captured by
the Bertsch parameter [8]. However, despite their universal
physics, contact interactions do not represent finite range inter-
actions seen in nature, e.g., screened Coulomb forces, neutron-
neutron interactions, and narrow Feshbach resonances. In this
paper we present a study of the consequences of finite ranged
interactions in a unitary Fermi gas.

The scattering of two particles at low energies is described
by the scattering phase shift [9], which up to first order in the
wave vector k is given by

cot[δ(k)] = − 1

ka
+ 1

2
kReff,

where a is the scattering length and Reff the effective range.
In the limit of zero interaction range Reff = 0, a vanishing
scattering length a = 0 corresponds to a noninteracting gas,
while the unitary limit of infinite scattering length a−1 = 0
results in scale invariance. We use this scale invariance as
a solid basis to investigate the effects of the length scale
introduced by the effective-range term Reff . Typical values
for the effective range are kFReff ≈ 3 [10,11] for neutron
matter, and kFReff � −4 for the 543.25 G narrow Feshbach
resonance of 6Li [12,13]. There is a wide variety of Feshbach
resonances available [7] and several of those exhibit large
negative effective ranges, summarized in Ref. [13].

So far most quantum Monte Carlo (QMC) studies of finite-
range interactions have used the Pöschl-Teller interaction
potential for 0 < kFReff < 0.4, and then extrapolate effective-
range effects to zero to study the ground state of the unitary
Fermi gas [14–16]. Forbes et al. [11] purposefully consider the
effect of small positive effective ranges up to kFReff = 0.35 in
the context of neutron matter. Negative effective ranges have
been studied in an Eagles-Leggett mean-field theory using a
well-barrier interaction potential at zero temperature [17,18],
at finite temperature [19], and also using the two-channel

model of the Feshbach resonant interaction at both zero and
finite temperatures [12,20].

Here we study a gas at unitarity across a broad spread of
effective ranges −2 � kFReff � 2. Many-body physics arises
from repeated two-body scattering events, so a Hamiltonian
where the opposite spin fermions interact via a pseudopotential
that exactly reproduces the scattering phase shift with a−1 = 0
and Reff is the ideal platform for an accurate many-body sim-
ulation. To smoothly connect positive and negative effective
ranges we develop a pseudopotential following Refs. [21,22].
The pseudopotential is smooth and extended in space, making
it easy to sample with the variational and diffusion Monte Carlo
methods that we use to calculate ground-state properties [23].

In Sec. II we use two-body scattering theory to understand
the properties of our potential. In Sec. III we evaluate four
possible choices for the interaction potential, including the
proposed ultratransferable pseudopotential (UTP) and select
the UTP as the potential of choice for numerical studies. In
Sec. IV we discuss the quantum Monte Carlo formalism and
present results for the ground-state energy including values
for the universal constants, condensate fraction, momentum
distribution and Tan’s contact, and pair-correlation functions.
Finally, we consider the thermodynamic stability of the system
in Sec. V and find that gases with kFReff � 1.9 are unstable.

II. FORMULATION OF THE PROBLEM

We study the Hamiltonian for spin 1/2 fermions in three
dimensions with resonant interactions between opposite spins,

Ĥ = −1

2

N∑
i=1

∇2
i +

N∑
i �=j

V (rij ).

Atomic units (� = m = 1) are used throughout. ∇2
i is the

Laplacian with respect to the coordinates of particle i, N is the
total number of particles, and we study equal numbers of up
and down spin particles. rij is the distance between particles
i and j , and V is an interaction potential that acts between
particles with opposite spins, characterized by the idealized
scattering phase shift cot[δ(k)] = kReff/2. To understand the
form of this interaction potential we first summarize some
important results from scattering theory and in particular
consider the possible emergence of bound states, before we
discuss the explicit forms of the potentials used.
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A. Scattering theory

We consider two identical distinguishable fermions in
a vacuum. In their center-of-mass frame, the Schrödinger
equation for particles interacting via a radially symmetric
potential V (r) is given in spherical coordinates by

[−∇2 + V (r)]ψ(r,θ,φ) = Eψ(r,θ,φ),

where E is the energy of the relative motion.
The analytic solution for noninteracting particles,

V (r) = 0, takes the form

ψlm(r,θ,φ) = Ylm(θ,φ)Rl(r),

with l the angular momentum and m the component of the
angular momentum along the quantization axes. Ylm are the
spherical harmonics, and the radial function Rl is given by

Rl(r) = Al(k)jl(kr) + Bl(k)nl(kr), (1)

where k = √
E is the wave vector in the center-of-mass

frame, and the coefficients Al(k) and Bl(k) are set by the
boundary conditions. jl(kr) and nl(kr) are the spherical Bessel
and spherical Neumann functions respectively. To connect to
scattering waves we rewrite the radial function in terms of
spherical Hankel functions h

(1,2)
l (kr) = jl(kr) ± inl(kr),

Rl(r) = A′
l(k)h(1)

l (kr) + B′
l(k)h(2)

l (kr).

The Hankel functions h
(1,2)
l (kr) behave as spherical waves at

large radii ∼ exp[±i(kr − lπ/2)]/r .
The effect of a spherically symmetric interaction potential

V (r) on the wave function is limited by angular momentum
conservation and causality to the introduction of a phase shift
δl(k) in the outgoing wave h

(1)
l (kr) of the radial wave function,

Rint
l (r) = Cl(k)

[
ei2δl (k)h

(1)
l (kr) + h

(2)
l (kr)

]
, (2)

with Cl(k) a normalization constant. At large radii Rint
l (r) ∼

sin[kr + δl(k) − lπ/2]/r , verifying the interpretation of δl(k)
as a phase shift. δl(k) is related to the coefficients in Eq. (1)
as δl(k) = arctan[−Bl(k)/Al(k)]. The ratio −Bl(k)/Al(k) can
be expressed in terms of the logarithmic derivative of the
interacting radial wave function by matching Rint

l (r) and Rl(r)
at the cutoff radius rc beyond which the interaction potential
vanishes. Combining both results, the phase shift can be
expressed as

δl(k) = arctan

[
kj ′

l (krc) − γljl(krc)

kn′
l(krc) − γlnl(krc)

]
,

where γl = (Rint
l )′(rc)/Rint

l (rc).
At large radii, the interacting wave function can also be

written as the sum of an incoming plane wave and a spherical
outgoing scattered wave

lim
r→∞ ψ int(r) = eik·r + f (k,θ )

r
eikr ,

with f the scattering amplitude and θ the scattering angle. By
equating the radial component of this expression in angular
momentum channel l with Eq. (2), the scattering amplitude
can be related to the phase shift

fl(k) = 1

cot[δl(k)] − ik
.
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FIG. 1. Scattering phase shift δ(k) = arccot(kReff/2) for the three
different cases of Reff . For Reff < 0 the phase shift of a realistic
potential with the same low energy scattering properties is indicated
by the red dotted line. The noninteracting phase shift is shown by the
gray dashed line.

This expression reveals bound states of the interaction potential
because they introduce poles into the scattering amplitude
fl(k) [9]. From now on we focus on the l = 0 channel
that dominates interactions between opposite spin fermions,
starting with an examination of possible bound states in the
next section.

B. Bound states

Each time the phase shift accumulates a factor of π , a
node is introduced in the wave function of the scattered wave
∼ sin[kr + δ(k)]/r . Since each node introduced into the wave
function by the potential corresponds to an additional bound
state, this establishes the link between the scattering phase shift
and the number of bound states n � 0 for any well-behaved
potential, which is formalized in Levinson’s theorem [24],

δ(0) − δ(∞) =
{
nπ, a−1 �= 0,(
n + 1

2

)
π, a−1 = 0.

We are interested in the latter case a−1 = 0. As is evident
from Fig. 1, for Reff > 0 the phase shift decreases from π/2
to 0, and there is no bound state. For Reff < 0, δ(0) − δ(∞) =
−π/2, which gives n = −1. Because the number of bound
states cannot be negative, this phase shift does not correspond
to a physical potential. However, potentials with the same
low-energy scattering properties may be obtained from a
phase shift with additional contributions at higher order in
k. Provided these contributions occur at momenta beyond
the largest momentum scale in the system, i.e., the Fermi
momentum kF for a fermionic many-body system, they do
not affect the physics of the system as the interacting particles
cannot probe these high momentum features. As seen in the
figure, the effect of the higher-order term is to introduce a phase
winding of π so that δ(0) − δ(∞) = π/2, which corresponds
to a physical potential with no bound state. We conclude that
in both cases there is no bound state and the potential is
therefore completely characterized in terms of its scattering
phase shift [24].

Despite the absence of a true bound state with negative en-
ergy, virtual bound states may exist. The scattering amplitude
for our idealized phase shift reads

f = 1
1
2k2Reff − ik

,

which has a pole at zero energy k = 0. In the zero-range limit,
Reff = 0, this pole corresponds to a zero energy virtual bound
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state, which is the a → ∞ limit of the familiar bound state
with energy E = −1/(2a2) [5,12]. Because the pole in the
scattering amplitude extends to finite effective range Reff , so
does the virtual bound state, which will be important for our
discussion of the many-body system in Sec. IV A.

III. PSEUDOPOTENTIALS

Having defined the interaction potential in terms of
scattering properties, we evaluate four possible real-space
interaction potentials for use in our many-body simulations.
For positive effective range we consider the potential well
and Pöschl-Teller interactions; for negative effective range we
consider the well-barrier potential. Furthermore, we propose
the ultratransferable pseudopotential (UTP) [21,22,25,26],
which is equally applicable for both positive and negative
effective ranges. After comparing all four potentials, we select
the UTP for our numerical study.

A. Positive effective range

Positive effective ranges Reff > 0 for attractive interactions
are usually obtained from uniformly attractive potentials,
V (r) � 0 for all r . In this case, the effective range is
approximately equal to the physical interaction range [9],
while the depth of the potential can be used to tune the
scattering length.

1. Potential well

A spherical potential-well interaction was used in
Refs. [18,27,28] as a model for contact interactions,

V (r) =
{

−(
π

2Reff

)2
, r � Reff,

0, r > Reff,

tuned to have scattering length a−1 = 0, and effective range
Reff . The scattering phase shift of this potential is correct at
low incident energies, but is incorrect at intermediate energies
where higher-order terms start to contribute.

2. Pöschl-Teller

The Pöschl-Teller interaction gives the exact phase shift
with scattering length a and effective range Reff in the lowest
angular momentum channel [24], and has been used in several
studies [11,14,29,30]. At unitarity, a−1 = 0, the potential can
be written in terms of its effective range Reff as

V (r) = − 8R−2
eff

cosh2
(

2r
Reff

) .

B. Negative effective range

Scattering phase shifts with negative effective-range result
from potentials with an attractive well hosting a (virtual) bound
state at short radii, and a potential barrier at intermediate
radii. Quantum tunneling through the potential barrier couples
the (virtual) bound state with the continuum of scattering
states at large radii. When a rising barrier suppresses quantum
tunneling, the (virtual) bound and scattering states become
uncoupled.

These potentials are called Shape resonances and exhibit
the same physics as Feshbach resonances. In the Feshbach
resonance model the (virtual) bound state in the well is
represented by the closed channel, and the tunneling through
the potential barrier is described by a hybridization term that
mixes the closed channel with the open channel that describes
the continuum of scattering states [13].

1. Well-barrier potential

Following Refs. [17–19] we consider a well-barrier poten-
tial,

V (r) =
⎧⎨
⎩

−U0, r � R0,

U1, R0 < r � R1,

0, r > R1,

with U0,U1 > 0 and R1 > R0 > 0. This potential reduces to
the potential well for U1 = 0. A potential with scattering length
a and effective range Reff for given radii {R0,R1} can be
obtained by suitably tuning the well depth and barrier height
{U0,U1} as described in Ref. [18]. We discuss our choice for
{R0,R1} in Sec. III D.

As discussed in Sec. II B, the scattering phase shift of
physical potentials with negative effective range include a
phase winding by π at some high momentum k. Dimensional
analysis confirms that this momentum may be pushed to
arbitrarily high momentum where it does not affect the
scattering of low-energy particles by reducing {R0,R1}, at the
expense of diverging {U0,U1}.

C. UTP

We now propose a pseudopotential that describes both
positive and negative effective ranges. It is also smooth
and extended in space, easing the application of numerical
methods. Following [21,22] we propose a UTP that takes a
polynomial form within a cutoff radius rc,

V UTP(r)

=
{(

1 − r
rc

)2[
u1

(
1 + 2r

rc

) + ∑Nu
i=2 ui

(
r
rc

)i]
, r � rc,

0, r > rc,

where the ui are the Nu = 5 optimizable coefficients. The term
(1 − r/rc)2 ensures that the pseudopotential goes smoothly to
zero at r = rc, and the component u1(1 + 2r/rc) constrains the
pseudopotential to have zero gradient at particle coalescence,
to ensure that the wave function in the potential is smooth.

We calibrate the potential to deliver the correct scattering
phase shift for particles with momenta up to the characteristic
momentum scale of our many-body system, the Fermi mo-
mentum kF. To determine the coefficients {ui} we numerically
solve the scattering problem, extract the scattering phase shift
δUTP
l (k), and then minimize the total squared error in the phase

shift over angular momentum channels l and relative scattering
wave vectors k of particles in the Fermi sea,

〈∣∣δUTP
l (k) − δl(k)

∣∣2〉 =
∑

l

∫ kF

0

∣∣δUTP
l (k) − δl(k)

∣∣2
g(k/kF)dk,

where the weighting is given by the density of
scattering wave vectors in the center-of-mass frame
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g(x) = 12x2(2 − 3x + x3). The virtue of a large cutoff radius
rc is that it leads to potentials that are more extended in space.
On the other hand, rc should be smaller than the interparticle
spacing so that three-body scattering events are rare. We
therefore choose rc = 1/kF, except for large positive effective
ranges where we need a cutoff radius of the order of Reff , so
we adopt rc = max(1/kF,2Reff).

D. Comparison of potentials

Having introduced four possible interaction potentials,
we now compare how accurately they recover the correct
scattering phase shift and their numerical efficiency. The latter
is a combination of two factors: numerical convergence is aided
by smooth potentials as they produce smooth wave functions,
and also by potentials with a wide spatial extent as they occupy
a larger volume of configuration space so are more rapidly
sampled.

To visualize the smoothness and extent of the interaction
potentials we plot potentials with effective ranges kFReff =
{−1,0.1,1} in Fig. 2. For positive effective range the UTP is
similar to the Pöschl-Teller interaction. The potential well is of
similar spatial extent, but shows a discontinuity. The diverging
depth of the Pöschl-Teller and potential-well interactions in the
zero-range limit, kFReff = 0, is illustrated by the deepening
of those potentials as the effective range decreases from
kFReff = 0.2, indicated by the dotted line, to kFReff = 0.1,
indicated by the solid line. In this limit the interaction becomes
momentum independent, which for the potential-well and
Pöschl-Teller interactions implies that they also become short
ranged. This is not the case for the UTP, as we calibrate
the potential only for wave vectors up to an intermediate
momentum scale kF. The shaded region shows the variation of
the UTP with effective range 0 � kFReff � 0.2, demonstrating
its shape remains similar even in the zero-range limit. The
numerical advantage of the UTP becomes clear: it remains
smooth and extended in space. For negative effective range
the UTP displays a barrier at intermediate distances, like
the well-barrier potential. For the well-barrier potential we
set {kFR0 = 0.2,kFR1 = 0.4}, so that its depth and height
are similar to that of the UTP. Many-body simulations will
benefit from the smoothness of the UTP compared to the two
discontinuities for the well barrier. We conclude that the UTP
is the only potential that is of finite depth at all effective ranges,
is smooth and extended in space, and is therefore well suited
for use in a QMC simulation.

Having examined the numerical advantages of the UTP
compared to the other potentials, we now evaluate the accuracy
of their scattering phase shifts. In Fig. 3 we plot the root-mean-
square (rms) phase-shift error of the potentials summed over
angular momentum channels and integrated over scattering
wave vectors up to the Fermi wave vector kF. For positive
effective range the UTP is over two orders of magnitude more
accurate than the potential well. Its maximum error of less
than 10−3 also renders it equivalent to the exact Pöschl-Teller
interaction for all practical purposes. For negative effective
ranges we note that even though the depth and height of the
well-barrier potential have been chosen to mimic the UTP,
its phase-shift properties are almost two orders of magnitude
worse. As the UTP is the easiest to work with in a many-body
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FIG. 2. Plots of different potentials normalized by the reciprocal
Fermi energy EF as a function of radius for effective ranges
kFReff = {−1,0.1,1}. For the case kFReff = 0.1, the potentials are
shown using solid lines, whereas the red and blue dashed lines show
the Pöschl-Teller and potential well interactions with kFReff = 0.2,
and the shaded purple region shows the variation of the UTP for
effective range 0 � kFReff � 0.2. The parameters of the well-barrier
potential potential were chosen so that its depth and height correspond
to those of the UTP.
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tial well, well barrier, and UTP for k ranging from 0 to kF. On average,
the rms phase shift error for the UTP is about two orders of magnitude
less than that for the potential well and well-barrier potentials.
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simulation, accurate, and applies at all effective ranges, we
select it for our QMC many-body study.

IV. QUANTUM MONTE CARLO METHOD

To calculate the ground-state properties of the Fermi gas
we use a quantum Monte Carlo (QMC) method that is a
tandem of the variational Monte Carlo (VMC) and fixed-node
diffusion Monte Carlo (DMC) techniques [23,31,32]. We use
the CASINO implementation [33] with a Slater-Jastrow trial
wave function 
 = eJ D, where D is a Slater determinant of
N/2 pairing orbitals φ(rij ), each holding an up and down spin
particle, and J a Jastrow factor that we optimize first using
VMC, before using DMC to further relax the wave function
to its ground state. DMC is an accurate Green’s function
projector method for determining ground-state energies and
other expectation values, and is well suited to investigating
homogeneous gaseous phases.

The pairing orbitals [29,34] are formed of a linear combi-
nation of plane waves and polynomials

φ(rij ) =
NPW∑
n=0

an

∑
G∈Sn

exp(iG · rij )

+ �(LP − rij )

(
1 − rij

LP

)3 NP∑
n=0

bnr
n
ij ,

with G an element of the set of symmetry related reciprocal
lattice vectors Sn, NPW is the number of sets to include,
and NP is the order of the polynomial. rij = ri − rj is
the separation between two particles with opposite spins
at positions ri and rj , and rij = |rij | its magnitude. The
term �(LP − rij )(1 − rij /LP)3, where � is the Heaviside step
function and LP is an optimizable cutoff length, ensures that the
polynomial orbital smoothly approaches zero before the edge
of the cell. The coefficients an and bn are optimizable, with the
exception of a0, which we set to 1, and b1, which is fixed by
requiring that the orbital is cuspless at the origin. The Slater
determinant of these orbitals contains both the noninteracting
limit where the particles fill the NPW shells of plane waves,
and a superconducting state of Cooper pairs captured by the
polynomial series.

As superconductivity is a collective phenomenon, it is
important to capture many-body correlations in the pairing
orbitals. We therefore use a backflow transformation [35] that
replaces the particle coordinates ri by collective coordinates
xi(R) = ri + ζi(R) with

ζi(R) =
∑
i �=j

rij�(LB − rij )

(
1 − rij

LB

)3 NB∑
n=0

ηsisj ,nr
n
ij ,

where si,sj are magnetic quantum numbers of particles i and j ,
NB = 5 the order of the polynomial, and LB is an optimizable
cutoff length. The optimizable coefficients ηαβ,i have to obey
the symmetry requirements η↑↑,i = η↓↓,i and η↑↓,i = η↓↑,i .
We find backflow corrections between particles of equal spin
to be insignificant and therefore set η↑↑,i = η↓↓,i = 0.

The Slater determinant is multiplied by a Jastrow factor
eJ , to capture the short-distance behavior of the pairwise

interaction potential. We use

J =
∑
i �=j

�(LJ − rij )

(
1 − rij

LJ

)3 NJ∑
n=0

usisj ,nr
n
ij ,

where NJ = 8 is the order of the polynomial and LJ is an
optimizable cutoff length that we choose in accordance with
the cutoff radius of the pseudopotential [36]. The optimizable
coefficients uαβ,i have to obey the symmetry requirements
u↑↑,i = u↓↓,i and u↑↓,i = u↓↑,i , and uαβ,1 is fixed by requiring
zero gradient at the origin. Similar results are obtained with a
Jastrow factor optimized for periodic systems [37].

In the zero-range limit kFReff = 0 the Slater-Jastrow trial
wave function captures 93% of the correlation energy, defined
as the difference in ground-state energy between the Hartree-
Fock and DMC results. The backflow transformation captures
another 3.5%, raising the total to 96.5%. Backflow transfor-
mations are especially important for negative effective range,
where the amount of correlation energy captured without
backflow transformations is only 85% at kFReff = −2, while
a trial wave function with backflow transformations captures
92% of the correlation energy.

Observables other than the ground-state energy are com-
puted using the extrapolated estimator 〈Â〉 = 2〈Â〉DMC −
〈Â〉VMC, which combines the DMC and VMC expectation
values of the operator Â to reduce the bias from linear to
quadratic in the difference between the VMC and DMC wave
functions [38]. In agreement with Refs. [14,15,29] we find
the results of this extrapolation to be within the statistical
error bar of the DMC estimate and therefore expect residual
errors to be small. We extrapolate to zero DMC time step
and infinite number of walkers to obtain accurate ground-state
energies following the procedure detailed in Appendix A 1. We
expect that the use of a quadratic DMC algorithm would give
similar results [39,40]. We calculate the ground-state wave
function in the thermodynamic limit using data points for
systems with {66, 114, 162, 186, 294} particles; technical
details of the extrapolation to infinite system size are provided
in Appendix A 2. For the smallest system, we use NPW = 5
plane waves to accommodate the 2 × 33 spin-up and -down
particles, while for the largest system we use NPW = 10. We
set NP = 6, allowing us to accurately describe particles in
the virtual bound state for negative effective range. In total
our trial wave function includes 34–39 parameters that we
optimize using VMC, before using the trial wave function as
a starting point for our DMC calculations.

A. Ground-state energy

Having developed a pseudopotential that smoothly connects
positive and negative effective ranges and outlined our trial
wave function, we are well positioned to study the ground-
state properties of resonant Fermi gases with effective ranges
−2 � kFReff � 2. We first study the ground-state energy per
particle E, plotted as a fraction of that of a noninteracting gas
E0 = 3

5EF, with EF the Fermi energy, in Fig. 4. Starting from
the zero-range case kFReff = 0, we discuss the large negative
and positive effective-range limits. The zero-range case itself
will be discussed in the next section.
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FIG. 4. Ground-state energy per particle of the unitary Fermi gas
as a fraction of that of a noninteracting gas with effective range kFReff .
Results obtained using the UTP are shown in purple, and results
obtained using the Pöschl-Teller interaction for positive effective
range in red. For large negative effective range the mean-field (MF)
theory of Ref. [12] is indicated by the dotted green line.

We observe a decreasing energy as the effective range tends
to kFReff = −2. The potential barrier we saw in Fig. 2 rises
and decouples the virtual bound state inside the barrier from
the Fermi sea. This reduces the energy of a pair of opposite
spin particles in the bound state towards the zero energy of the
bare virtual bound state, causing more particles at the Fermi
surface to pair and the energy to approach zero. This behavior
is qualitatively the same as that from the BCS mean-field
calculation of Ref. [12], while quantitatively our DMC energy
approaches their mean-field energy, which is exact only in the
limit kFReff → −∞.

For positive effective ranges, we observe a maximum value
in the ground-state energy E = 0.432(1) E0 at kFReff = 0.8.
For larger effective ranges, the physical range of the interaction
increases so that one particle can now interact simultaneously
with several opposite spin particles, causing the energy to fall.
The rapid decrease in energy in the kFReff → ∞ limit gives
rises to a thermodynamic instability that will be discussed in
Sec. V.

We also calculate the ground-state energy using the alter-
native Pöschl-Teller interaction available for positive effective
ranges. The results for the UTP and Pöschl-Teller interaction
coincide, demonstrating the universality of the many-body
ground-state energy for potentials with equivalent scattering
properties in the Fermi sea.

B. Zero-range limit

Having studied the variation of the ground-state energy
over the full extent of effective ranges we now focus on the
behavior near the zero-range limit kFReff = 0 in Fig. 5. For
small effective range the ground-state energy per particle can
be parametrized as [46]

E
3
5EF

= ξ + ζkFReff + O((kFReff)
2),

where the Bertsch parameter ξ and ζ are universal constants for
Galilean invariant continuous space models. From Ref. [47] we
note that the effective coupling is stronger for more negative
effective range and we therefore expect ζ > 0. We report
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FIG. 5. Ground-state energy per particle of the unitary Fermi
gas as a fraction of that of a noninteracting gas with effective
range kFReff . The UTP shown in purple and Pöschl-Teller in red are
results from this work. Also shown are other numerical results from
Refs. [11,14,27,29,30,41], where for Ref. [30] we extrapolated their
results to infinite system size as shown by the solid gray line, with
the uncertainty in our extrapolation indicated by the dashed lines.
Experimental results at kFReff = 0 from Refs. [42–45] are shown
in the box on the left, slightly offset from unitarity for improved
readability.

ξ = 0.388(1), which agrees with the experimental result of
Luo and Thomas [42]. Our result is two times the experimental
standard error lower than the result of Navon et al. [43], while it
is approximately two standard errors higher than the results of
Ku et al. [45] and Zürn et al. [44]. Our statistical error estimates
are negligible in comparison with the experiments, but the fixed
node constraint on the variational wave function introduces a
systematic error, which could explain why our value is higher
than the experimental measurements of Refs. [44,45]. Our
result agrees with ξ = 0.390(2) from a DMC calculation by
Pessoa et al. [41]. For the slope we find ζ = 0.087(1), in
agreement with the auxiliary field result ζ = 0.11(3) from
Carlson et al. [30], but in disagreement with the DMC result
ζ = 0.127(4) of Forbes et al. [11]. Before discussing how
this deviating value may be understood as the result of the
computational method employed, we first illuminate how the
choice of pseudopotential influences the results.

To compare the UTP with the Pöschl-Teller interaction used
in Refs. [11,14,29] we calculate the ground-state energy for
both potentials using the same trial wave function. As we
have seen before the equivalent phase shift of the UTP and
Pöschl-Teller interaction guarantees the same ground-state
energy for both potentials, but as the effective range is
reduced the DMC energy calculated using the Pöschl-Teller
interaction overestimates that of the UTP and the error bars
for the Pöschl-Teller interaction become larger. As QMC is
a variational method, it is important to use an accurate trial
wave function. This is especially true for attractive interactions
where the BCS instability requires that the nodal surface is
optimized during a VMC calculation, before fixing the nodes
and further reducing the energy using DMC [34]. The quality
of the trial wave function is described by the variance of
the local energy EL = 
−1Ĥ
, which is zero for the true
ground state. Because the depth of the Pöschl-Teller interaction
diverges, the local energy variance for kFReff � 0.2 calculated
with the Pöschl-Teller interaction is more than four times that
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calculated with the UTP, explaining the overestimate of the
ground-state energy and larger error bars, and confirming the
numerical advantage of our wide and smooth UTP.

Having understood how the smooth UTP results in a lower
variational estimate of the energy, we now compare our
results with other DMC studies [11,14,27,29,41]. We find a
lower variational energy because, besides the smooth UTP,
our study employs a trial wave function that includes more
variational freedom over previous studies. In particular, we
have combined the flexible Jastrow factor, polynomial pairing
orbitals and backflow transformation of Ref. [29] with the
plane-wave orbitals used in Refs. [11,34]. This could explain
why our reported value for the slope ζ = 0.087(1) is lower
than ζ = 0.127(4) from Forbes et al. [11].

We have also compared our DMC with the auxiliary field
QMC study that is free from the sign problem for a spin
balanced system with attractive interactions and therefore does
not require the fixed node approximation [30]. The results in
their Fig. 2 display finite-size effects, leading to uncertainty
in our extrapolation of their results to infinite system size.
Nevertheless, the extrapolated ground-state energy for effec-
tive range 0.15 < kFReff < 0.3 agrees with our result within
0.01 E0.

C. Condensate fraction

Having studied the variation of the ground-state energy
we now examine other expectation values starting with the
condensate fraction. A defining feature of a superconductor
is the existence of a condensate that introduces correlations
between Cooper pairs of opposite spin particles irrespective of
their separation. Correlations between pairs of opposite spins
are naturally captured by the off-diagonal two-body density
matrix

ρ
(2)
↓↑(r′

1,r
′
2; r1,r2) = 〈c†↑(r′

1)c†↓(r′
2)c↓(r2)c↑(r1)〉,

where c†α(r) is the fermionic creation and cα(r) the annihilation
operator for a particle with spin α at position r. It is convenient
to work in coordinates that make the separation between
two pairs, R = 1

2 (r′
1 + r′

2) − 1
2 (r1 + r2), and the size of the

pairs r = r1 − r2 and r′ = r′
1 − r′

2 explicit. In the limit R =
|R| → ∞ the two-body density matrix is proportional to the
condensate fraction c [28,48]

ρ
(2)
↓↑

(
R + r′

2
,R − r′

2
;

r
2
,− r

2

)
→ c

N

2
φ∗(|r′|)φ(|r|), (3)

where φ(r) is the complex pair wave function normalized to
reciprocal volume 1/�, and N is the number of particles. In
the normal phase where correlations between pairs vanish as
R → ∞, c = 0, while for a superconducting phase the pairs
remain correlated however far apart they are and the fraction
of particles in the condensate is 0 < c � 1.

The numerical computation of the condensate fraction using
the relation above is complicated as it requires an extrapolation
to the R → ∞ limit [14,28,29]. This motivates us to use a
Fourier transform to capture the long-distance behavior as a
zero-momentum mode, in order to accurately compute the
condensate fraction using all accumulated samples of the two-
body density matrix across the entire simulation cell, following
the procedure outlined in Appendix B.
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FIG. 6. Condensate fraction as a function of effective range
calculated using the UTP in purple and Pöschl-Teller interaction
in red for comparison. We also plot the results obtained near the
zero-range limit by Refs. [14,28,29].

The condensate fractions calculated with the UTP and
Pöschl-Teller interactions agree as seen in Fig. 6, confirm-
ing the accuracy of the UTP. We also show data from
Refs. [14,28,29] for comparison and, after taking into account
the effective ranges used, observe good agreement between
results. In the zero-range limit kFReff = 0, we report c =
0.56(2) and the negative slope for the condensate fraction is
consistent with the positive slope for the energy encountered
earlier, as the breaking of Cooper pairs increases the energy.
There is a maximum in the condensate fraction at kFReff ≈
−1.8 of 0.83(1). For more negative effective range, the virtual
bound states decouple from the Fermi sea, and so, although the
particles remain paired, they no longer interact with each other
and correlations between pairs vanish, causing the condensate
fraction to decrease [12].

D. Momentum distribution

Having surveyed how the ground-state energy and conden-
sate fraction vary with effective range, we now select three
characteristic effective ranges kFReff = {−1,0,1} to study
one- and two-body correlation functions. In this section we
study the momentum distribution shown in Fig. 7. In the
limit Reff → ∞ the physical range of the potential diverges,
approaching a constant background potential and so the
momentum distribution approaches that of a noninteracting
system. When the effective range is decreased from positive to
negative, the sharp cutoff at the Fermi momentum disappears
as weight is moved from low momenta to the high momentum
tail characteristic of a state of paired particles.

The tail of the momentum distribution at unitarity in
the zero-range limit is n(k) → C/k4, where C is Tan’s
contact [49]. As shown by Ref. [50] this result extends to
Reff < 0 and the contact becomes a function of effective
range C(kFReff). In the zero-range limit we report C(0)/k4

F =
0.119(1), which is in reasonable agreement with 0.1147(3) [15]
and 0.0961(1) [41] computed using different trial wave
functions. Our results for kFReff = −1 are consistent with a
∼1/k4 tail, and we find an increased value for the contact
C(−1)/k4

F = 0.157(3) as expected when more particles pair.
For positive effective ranges we observe a more rapidly
decaying tail.
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n(k) = C/kα to the momentum tail k > 2.2kF.

E. Pair-correlation function

To better understand the two-body interactions that cause
the deformation of the Fermi surface, we show the pair-
correlation function for opposite and equal spins in Fig. 8.
For opposite spins, we correct the pair-correlation function
for short-range effects due to the particular form of the
pseudopotential [25]

g↑↓(r) = g
2-body,exact
↑↓ (r)

g
2-body,pseudo
↑↓ (r)

g↑↓(r),

where g
2-body,{exact,pseudo}
↑↓ (r) are the pair-correlation functions

for the two-body problem computed using the exact and
pseudopotential wave functions respectively. Since our UTP
is norm conserving [21,22] no correction is necessary outside
of the interaction region.

For opposite spins, the pair-correlation function naturally
shows that due to the attractive interaction the particles are
more likely to be found in close proximity compared to the
noninteracting case. In the zero-range limit the pair correlation
diverges at short interparticle distances as ∼1/r2 [49]. This
divergence becomes stronger for negative effective range
where particles of opposite spins are more likely to be found
in pairs, whereas for positive effective range the particles are
further apart compared to the zero-range case. The dominant
contribution to the correlations between equal spins at positive
and zero effective range is the exchange-correlation hole
due to the Pauli exclusion principle. The volume of the
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FIG. 8. Pair-correlation function for opposite (top) and equal
(bottom) spins for kFReff = {−1,0,1}. The noninteracting correlation
function is indicated by the gray dashed line.

exchange-correlation hole diminishes as the effective range
becomes negative, because the fermions are more likely to
be paired in the virtual bound state and behave as composite
bosons.

V. THERMODYNAMIC STABILITY

We saw in Fig. 4 that the ground-state energy of a Fermi gas
at unitarity falls rapidly with increasing effective range. This
raises the possibility of a thermodynamic instability towards
phase separation into a high-density phase with a high value
of kFReff , and so a large negative energy, and a low-density
phase. To analyze this possibility we first assess the behavior
of the ground-state energy using a mean-field approximation
before investigating the thermodynamic instability.

A. Hartree-Fock theory

The proposed collapse into the dense phase means the
dimensionless physical interaction range kFReff diverges and
the interaction potential approaches a constant background
potential. In this limit the wave function approaches that
of a noninteracting system so we can use the Hartree-Fock
approximation to estimate the ground-state energy per particle
as

EHF = 3EF

5
+ 1

4

∫
d3r V (r)n(r)

= 3EF

5

(
1 − 10π

108
kFReff

)
, (4)
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eff ≈ 0.25 (kFReff ≈ 1.9) is near the spinodal point calculated using
the Hartree-Fock theory at nR3

eff = 0.235 (kFReff = 1.91).

with n(r) the density, which in our case is uniform so n(r) = n,
and the factor of 1/4 accounts for the fact that interactions act
only between particles of opposite spin. The dependence on
the explicit form of the interaction potential only enters via
the integral, and the result is independent of the choice for the
potential well, Pöschl-Teller, or UTP.

B. Stability

To assess the thermodynamic stability we consider the
Helmholtz free-energy density F/�, with � the volume.
The Helmholtz free energy is F = E − T S, with temperature
T = 0 and S the entropy. For a thermodynamically
(meta)stable phase the free-energy density is required to be
a convex function of density, so d2F/dn2 > 0, whereas if
d2F/dn2 < 0 the system phase separates [51].

In Fig. 9 we show the free-energy density derived from
Eq. (4) as a function of the Fermi gas density, as well
as the curvature derived from this free-energy density. A
spinodal point where the free-energy density turns from convex
to concave occurs at nR3

eff = 0.235. This signals the onset
of phase separation into an infinitely dense phase and a
low density phase for effective range nR3

eff > 0.235, that is
kFReff > 1.91.

In the same figure we also show our DMC data obtained
using the UTP. Our DMC simulations are insensitive to phase
separation as the trial wave function has insufficient overlap

with that of a phase separated state, so we can address the
full extent of effective ranges. We interpolate our DMC results
with cubic splines to determine d2F/dn2, which show that
the spinodal point is at nR3

eff ≈ 0.25, kFReff ≈ 1.9, consistent
with the Hartree-Fock result.

We establish that resonant gases with effective range
kFReff � 1.9 are thermodynamically unstable to particle col-
lapse. The instability of a Fermi gas with finite range interac-
tions at unitarity is reminiscent of the instability for neutron
matter at finite scattering lengths, where a three-body repulsive
force is necessary to ensure thermodynamic stability [52]. The
concerns of Ref. [11] that the Pöschl-Teller interaction might
harbor a many-body bound state is a precursor to the instability
presented here.

VI. CONCLUSION

We have proposed the UTP as an interaction potential to
model resonant scattering of fermions with varying effective
interaction range. Unlike other potentials, the UTP smoothly
connects the positive and negative effective-range regimes.
Moreover, at the midpoint between those regimes where the
effective range is zero, the UTP remains smooth, extended in
space, and of finite depth. This allows us to perform an accurate
calculation of the ground-state properties as we can directly
simulate the zero-range limit, with no need for extrapolations.

Exploiting the numerical advantages of the UTP and an
improved estimator for the condensate fraction, we have
performed DMC ground-state calculations for resonant gases
as a function of effective interaction range. In the zero-range
limit, we report values for the universal constants of ξ =
0.388(1) and ζ = 0.087(1), for the contact C/k4

F = 0.119(1),
and for the condensate fraction c = 0.56(2). Furthermore,
by studying the momentum distribution and pair-correlation
functions, we have demonstrated how the system evolves
from a state of independent pairs of opposite spin particles
for negative effective range, to the strongly interacting state
in the zero-range limit kFReff = 0, and finally to the weakly
interacting BCS superconductor for positive effective range.
We find resonant gases with effective range kFReff � 1.9 are
unstable to phase separation into an infinitely dense phase and
a vacuum phase containing no particles.

Having covered the complete gamut of effective interaction
ranges, we expect our results will be relevant for cold atom
gases with both broad and narrow Feshbach resonances. On the
positive effective-range side we also expect our results to be
relevant for neutron matter. Furthermore, the UTP formalism,
extended here to include the effective-range term, will be
useful for future studies of both contact and finite ranged
interactions.

The software to generate the UTP and the data associated
with this work are available through the Cambridge University
Apollo Repository [53].
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APPENDIX A: DETAILS OF QMC EXTRAPOLATIONS

In this section we provide technical details of the extrapo-
lations employed to acquire accurate QMC data. To accurately
extract the ground-state energy it is important to extrapolate to
zero time step and infinite walker population, discussed in the
next section, and to the thermodynamic limit, discussed in the
second section.

1. Time step and walker population extrapolation

In DMC the imaginary time evolution operator e−Ĥ�τ

is applied at each time step �τ to a trial wave function,
represented by a finite number of walkers, to project out
the ground state [23]. The gradient of the energy as a
function of time step is expected to be proportional to the
local energy variance [25,26] and the true ground state is
recovered by extrapolating to zero time step and infinite walker
population [54].

In practice we perform these extrapolations simultaneously
by reducing the time step by a factor of 2, while increasing the
walker population by the same factor, as in Fig. 10. For optimal
efficiency the computational effort should be increased by 2

√
2

for each division of the time step by 2 [54]. For effective
range Reff � 0 our trial wave function optimized using VMC
results in small local energy variances. The variation with
energy and walker population is therefore small, less than
10−3E0 in the linear regime, which for kFReff = 1 extends
to time steps �τEF � 10−2 and for kFReff = 0 to time steps
�τEF � 2.5 × 10−3. However, for negative effective range
Reff < 0 the local energy variance is larger and we observe
a significant variation with time step and walker in the linear
regime extending up to time steps �τEF � 2.5 × 10−3. We
have performed additional tests to show that the variation of the
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FIG. 11. Ground-state energy for kFReff = {−1,0,1} as a function
of the number of particles. The straight lines show a weighted least-
squares fit to the data points with N � 162.

energy originates from the reduction in time step and not from
the increase in walker population. Extrapolating to zero time
step is essential as even the smallest time step used �τEF =
0.625 × 10−3 introduces a systematic error to the ground-state
energy of 3 × 10−3E0, and smaller time steps would require
a large number of steps to exceed the autocorrelation time of
the random Monte Carlo walk. We conclude that extrapolating
to zero time step and infinite walker population is essential to
accurately calculate ground-state energies.

2. System size extrapolation

Having extrapolated to zero time step and infinite walker
population, we now extrapolate to infinite system size. As the
length scale associated with the features of our interaction
potential is less than the average interparticle separation, we
expect system size effects to be dominated by the kinetic-
energy term in the Hamiltonian. The finite-size error in the
kinetic term originates from the discretization of the plane-
wave wave vectors, which in three dimensions is proportional
to the reciprocal number of particles 1/N [55].

Exploiting our smooth pseudopotential to create low-
variance trial wave functions, we can study systems with up to
294 particles. Results are shown in Fig. 11, where we observe
the expected linear regime for systems with more than 162
particles. For Reff � 0, finite-size effects are <2 × 10−3E0

for systems with more than 162 particles, where the particles
are bound in pairs described by the polynomial term in the
pairing orbitals. In contrast, for kFReff = 1 the plane-wave
term dominates and the trial wave function is closer to that
of a noninteracting system, thus displaying larger finite-size
effects with variations in energy up to 5 × 10−3E0 as the
system size is decreased from an infinite number of particles
to 162 particles. The residual errors in the extrapolation are
<10−3E0 and we conclude that extrapolating to infinite system
size using systems with at least 162 particles is essential to
obtain accurate predictions for the ground-state energy.

APPENDIX B: EVALUATING THE CONDENSATE
FRACTION

A central property of a superconductor is the existence of
a condensate of pairs of particles. The condensate manifests
itself as a macroscopic eigenvalue of the two-body density
matrix for opposite spins irrespective of the distance between
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the pairs of opposite spin particles, i.e., off-diagonal long-
range order [56]. In practice the limiting behavior of the two-
body density matrix is often used to compute the condensate
fraction [14,28,29], thereby ignoring available knowledge of
the two-body density matrix at short distances and in the
corners of the simulation cell. Here, we propose a Fourier
transform to exploit knowledge of a modified two-body density
matrix over the entire simulation cell to accurately estimate
the condensate fraction. We show that this improved estimator
gives direct access to the condensate fraction.

We consider the BCS wave function [57]

|
BCS〉 =
∏

k

(u∗
k + v∗

kc
†
↑kc

†
↓−k)|0〉,

with uk,vk the usual complex coherence factors to evaluate
the expectation values in this section. As demonstrated by the
Eagles-Leggett mean-field theory of the BEC-BCS crossover
this wave function is qualitatively correct even in the strong-
coupling limit [3,58]. We introduce the order parameter
F (r) = 〈c↓(r)c↑(r)〉, related to the pair wave function intro-
duced earlier as F (r) = √

cN/2φ(r). Expressed in terms of the

coherence factors F (r) is

F (r) = 1

�

∑
k

eik·rukv
∗
k,

with � the volume. F (r) is the eigenfunction of the off-
diagonal two-body density matrix at large interpair separation
R and the condensate fraction c is defined in terms of its
macroscopic eigenvalue [48]

c = 2�

N

∫
�

d3r|F (r)|2 = 2

N

∑
k

|uk|2|vk|2.

To compute the condensate fraction numerically we in-
troduce the spatially averaged one- and two-body density
matrices. We use the projected two-body density matrix
obtained by setting the separation between particles in each
pair equal to each other, r = r′, thereby eliminating one
coordinate to integrate over [59,60]

ρ̄(1)
α (R) = 1

�

∫
�

d3r̄ ρ(1)
α (r̄ + R,r̄),

ρ̄
(2)
↓↑(R) = 1

�2

∫
�

d3r̄ d3rρ
(2)
↓↑

(
r̄ + R + r

2
,r̄ + R − r

2
; r̄ + r

2
,r̄ − r

2

)
,

where ρ(1)
α (r′,r) = 〈c†α(r′)cα(r)〉 is the one-body density matrix

for spin α.
To remove known short-ranged one-body contributions

from the two-body density matrix we follow Ref. [28] and
introduce an estimator for the condensate fraction

c↑↓(R) = 2�3/2

N
(ρ̄(2)

↑↓(R) − ρ̄
(1)
↑ (R)ρ̄(1)

↓ (R)).

Using Eq. (3) we find at large radius R

lim
R→∞

c↓↑(R) = c/
√

�.

The extrapolation to the large R limit is problematic in
numerical studies where information is available for finite
R values only, and would neglect information available in
the simulation cell at smaller distances and further out in the
corners of the simulation cell. Instead, we propose a Fourier
transform to capture the long-distance behavior of the two-
body density matrix as a discontinuity at small momentum.

Defining the Fourier transform pair as

f (r) = 1√
�

∑
k

e−ik·rfk, fk = 1√
�

∫
�

d3r eik·rf (r),

we compute the Fourier transform of the modified two-body
density matrix to give us direct access to the condensate
fraction c

c↑↓q = 2�3/2

N

(
ρ̄

(2)
↑↓q −

∑
k

ρ̄
(1)
↑k ρ̄

(1)
↓q−k

)

= 2

N

∑
k

[〈c†↑kc
†
↓q−kc↓q−kc↑k〉 − 〈c†↑kc↑k〉〈c†↓q−kc↓q−k〉]

= 2δq0

N

∑
k

|vk|2|uk|2 = δq0c,

with δab the Kronecker δ function. The condensate fraction
exists as a discontinuous peak at zero momentum as expected,
and due to the subtraction of the one-body density matrix the
condensate fraction estimator contains no other contributions.
We exploit this relation to accurately compute the condensate
fraction using all accumulated samples of the modified two-
body density matrix in the simulation cell.
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