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Itinerant ferromagnetism in an interacting Fermi gas with mass imbalance
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We study the emergence of itinerant ferromagnetism in an ultracold atomic gas with a variable mass ratio
between the up- and down-spin species. Mass imbalance breaks the SU(2) spin symmetry, leading to a modified
Stoner criterion. We first elucidate the phase behavior in both the grand canonical and canonical ensembles.
Second, we apply the formalism to a harmonic trap to demonstrate how a mass imbalance delivers unique
experimental signatures of ferromagnetism. These could help future experiments to better identify the putative
ferromagnetic state. Furthermore, we highlight how a mass imbalance suppresses the three-body loss processes
that handicap the formation of a ferromagnetic state. Finally, we study the time-dependent formation of the
ferromagnetic phase following a quench in the interaction strength.
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I. INTRODUCTION

By exploiting the fine control of interactions through a
magnetically tuned Feshbach resonance [1], ultracold atomic
Fermi gases have proven to be a rich arena in which to
study many-body physics. On one side of the Feshbach
resonance the effective s-wave interaction is attractive, which
has allowed investigators to realize a BCS state of Cooper
pairs. If the interactions are tuned across the Feshbach
resonance, the fermions bind to form molecules that can
subsequently form a Bose-Einstein condensate (BEC) [2].
However, the fermions experience repulsive interactions if
the Feshbach resonance is approached from the other side. A
recent experiment by the MIT group [3] on the repulsive side of
the resonance has provided the first tentative evidence for the
formation of an itinerant ferromagnetic phase. There was,
however, a significant atom loss process that could drive
the formation of alternative strongly correlated states [4],
which are consistent with some of the experimental results.
It is therefore essential to develop a different realization of
the ferromagnetic state which suppresses atom loss, and,
in addition, delivers unique experimental signatures to help
resolve the outstanding questions over the original experiment.
If the experiment were confirmed [5–8], the flexibility offered
by ultracold atomic gases now presents investigators with
a unique opportunity to study aspects of ferromagnetism
that cannot be envisioned in the solid state, including the
consequences of population imbalance [9], a conserved net
magnetization [10], the damping of quantum fluctuations by
three-body loss [11], single spin flips [12], spin drag [13],
spin spiral formation [14], reduced dimensionality [15], as
well as ferromagnetic phenomena in an optical lattice [16].
In this paper we turn to consider the consequences of the up-
and down-spin particles carrying different masses, a scenario
that cannot be realized in the solid state. Furthermore, the
system offers investigators a lower atom loss rate combined
with inimitable experimental signatures.

The MIT experiment prepared an ultracold atomic gas with
two different atomic species to represent the pseudo up- and
down-spin fermions. In the experiment, and all theoretical

studies of itinerant ferromagnetism to date, the two species
are different electronic states of the same atom, and therefore
carry the same mass. This accurately reflects the situation
in solid-state ferromagnetism where the up- and down-spin
electrons have the same effective mass. However, the flexibility
introduced by the ultracold atomic gas realization of ferromag-
netism permits the pseudo up and down spins to be represented
by two species of atoms of different elements with unequal
masses; alternatively an optical lattice can change the effective
mass of the atoms. Although in the solid state interactions can
change the effective mass of the majority- and minority-spin
species [17], distinct species of fermions in an ultracold atomic
gas provide a cleaner and more controlled realization of mass
imbalance. Furthermore, introducing a mass ratio breaks the
SU(2) symmetry of the conventional ferromagnet, and as a
result the magnetization has anisotropic susceptibility and
so offers a unique control parameter over magnetic ordering
and unique experimental signatures of the ferromagnetic state.
Moreover, introducing a mass imbalance should suppress the
three-body losses that hinder ultracold atom experiments [18].
Further motivation to study a generalized mass ratio stems
from unique physics discovered on the attractive side of the
Feshbach resonance. It has been established that imbalanced
Fermi surfaces in a superfluid can drive the formation of
the textured Fulde-Ferrel-Larkin-Ovchinnikov phase [19], and
here we explore the opportunity that different phenomena
could arise in a mass-imbalanced itinerant ferromagnet.

In this paper in Sec. II we first develop the formalism
required to study a mass-imbalanced Fermi gas with repulsive
interactions. Subsequently in Sec. III we derive the general
phase diagram for a uniform gas with both a generalized mass
ratio and also population imbalance. To cement the connection
to the recent possible experimental observation of ferromag-
netism in an ultracold atom gas, we consider the consequences
of a trapped geometry and study the quantities observable by
experiments in Sec. IV. In the current experimental realization
of ferromagnetism there were significant three-body losses so
the ferromagnetic phase was formed following a quench in the
interaction strength out of equilibrium. Therefore, in Sec. V
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we conclude our investigation by studying the dynamical
formation of the ferromagnetic phase. Finally, we summarize
our discussion of itinerant ferromagnetism in Sec. VI.

II. FORMALISM

To study itinerant ferromagnetism in the presence of a mass
imbalance we use the functional integral formalism developed
in Ref. [9]. The phase diagram predicted there has recently
been verified by ab initio quantum Monte Carlo studies [20,21]
and is also in accord with recent experimental findings [3,6,7].
Therefore, the approach described in Ref. [9] provides a solid
platform from which to investigate itinerant ferromagnetism
with a mass imbalance.

The formalism centers around calculating the quantum
partition function expressed as a coherent state field integral

Z =
∫

Dψ exp

[
−

∫ ∑
σ={↑,↓}

ψσ (∂̂τ + ξ̂σ )ψσ

−g

∫
ψ↑ψ↓ψ↓ψ↑

]
. (1)

Here the field ψ describes a two-component Fermi gas with a
repulsive s-wave contact interaction gδ3(r) acting between the
two species. We use the notation

∫ ≡ ∫ β

0 dτ
∫

dr with inverse
temperature β = 1/kBT , and dispersion ξ̂σ = p̂2/2mσ − µσ .
It will later be convenient to rewrite the particle masses as
mσ = m(1 + σr), and the species chemical potentials as µσ =
µ + σ�µ. Here σ ∈ {↑ ,↓} is a label to distinguish between
the two species of atoms and does not represent a physical
spin.

We now decouple the quartic interaction term, which will
allow us to integrate out the fermionic degrees of freedom.
Hertz did this by introducing a scalar Hubbard-Stratonovich
decoupling of the two-body interaction term into the mag-
netization channel [22]. By expanding in the magnetization
he was able to develop an effective Landau theory. However,
recent studies have shown that this approach fails to recover
the correct Hartree-Fock equations, and capture the behavior
of the soft transverse degrees of freedom [9]. Moreover, as
mass imbalance breaks the SU(2) symmetry of the system,
magnetization formed along the quantization axis is distinctly
different from perpendicular magnetization. We therefore
adapt the formalism developed in Ref. [9], and decouple the
quartic interaction term in the full vector magnetization φ

as well as the density channel ρ. This yields an action that
is quadratic in the fermion degrees of freedom, and after
integrating them out we recover the quantum partition function
Z = ∫

Dφ Dρ exp(−S) with an action

S =
∫

g(φ2 − ρ2) − Tr ln[(∂̂τ + ξ̂α + gρ)I − gφ · σ ]. (2)

We now focus on the saddle-point fields (or “mean fields”)
of the action, that is, φ and ρ satisfying δS/δφ = 0 and
δS/δρ = 0. We show in Sec. V A that fluctuations are gapped,
so we neglect the fluctuation corrections and assume that
the saddle-point fields make the dominant contribution to
the partition function. We then diagonalize the inverse Green
function inside the trace to the unique basis set χ ∈ {+,−}, and

perform the summation over Matsubara frequencies. Finally
we use � = −kBT ln(Z) to yield the thermodynamic grand
potential

� = gV (φ2 − ρ2) − kBT
∑

χ∈{+,−}

∫
dε ν(ε) ln(1 + e−βζχ ),

(3)

where V is the total volume, ν(ε) = m3/2√ε/π2h̄3
√

2 is the
density of states, and the effective dispersion is

ζ± = ε

1− r2
−µ+gρ ±

√
(gφ⊥)2 +

(
εr

1− r2
+�µ+gφz

)2

.

(4)

Varying the grand potential � with respect to φ and ρ

yields the saddle-point equations for the homogeneous mean
fields. We have checked numerically in Sec. III and analytically
in Sec. V A that any gas with a mass and/or chemical
potential imbalance breaks the SU(2) symmetry and does
not develop perpendicular magnetization, so φ⊥ = 0. This
result considerably simplifies the mean-field equations. As the
particle densities are related to the saddle-point fields through
nσ = ρ + σφz, at zero temperature we cast the mean-field
equations as

nσ =
√

2

3π2h̄3 m3/2
σ (µσ − gn−σ )3/2 , (5)

which shows that the Fermi energy of the σ species is
εFσ = µσ − gn−σ . This equation forms the backbone of our
subsequent analysis. We first use it to derive a generalized
Stoner criterion for the ferromagnetic instability in a mass-
imbalanced gas. Such a transition is characterized by the
appearance of three nearby solutions: the now unstable original
state, and two with small relative positive and negative
polarization. Demanding the existence of these solutions to
the self-consistent Eq. (5) yields a modified Stoner criterion
g
√

ν↑ν↓ = 1, where the νσ is a density of states at the σ species
Fermi surface. This reduces to the familiar criterion gν = 1 in
the mass- and population-balanced limit [23].

In Sec. V B we show that the saddle-point fields are
always uniform, even for general chemical potential and mass
imbalance. Therefore, unlike the superfluid regime where
a Fermi-surface imbalance can drive the formation of the
textured Fulde-Ferrel-Larkin-Ovchinnikov state [19], here for
a perfectly spherical Fermi surface, and in the absence of
nesting, only uniform ferromagnetic states will be formed. We
note, however, that fluctuation corrections drive textured phase
formation in the equal mass case [20], and have the potential
to do the same with mass imbalance.

III. PHASE DIAGRAM

Now that we have prepared the formalism, we are ideally
placed to study the phase diagram of the mass-imbalanced
Fermi gas with repulsive interactions. This will allow us to
build up an intuition for the consequences of mass imbalance
before we turn to study the gas in a harmonic trap in Sec. IV.
First, in Sec. III A, we examine the grand canonical ensemble
with a gas connected to an infinite particle reservoir, and
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second, in Sec. III B we study the gas with a constant number of
particles in the canonical ensemble. To cement the connection
to experiment, from now on we express the interaction
strength as kFa, the product of the Fermi wave vector kF of a
noninteracting gas with the same net number density, and the
scattering length a = g/2πh̄2(1/m↑ + 1/m↓) + O(g2) [24].
Consistent with the Hartree-Fock scheme we employed to
calculate the grand thermodynamic potential Eq. (3), we
have taken the lowest-order term in the scattering length
and neglected higher-order corrections in g [5,9,25]. We
concentrate on the phase behavior at T = 0.

A. Grand canonical ensemble

In the grand canonical ensemble the gas can exchange
particles with an ideal reservoir. We can control the average
number density of atoms by manipulating the chemical
potentials µσ of the reservoir.

To develop a physical understanding and connect with
previous work [6,7,9], we first describe the phase diagram
for a gas without a mass imbalance shown in Fig. 1(a).
When the gas is noninteracting it is paramagnetic for all
chemical potential imbalances �µ = µ↑ − µ↓. Above the line
�µ = 0, increasing the interaction strength drives polarization
in the up-spin direction. Conversely, below �µ = 0 the
gas becomes polarized in the down-spin direction. As the
interaction strength is increased across the boundary marked
on Fig. 1(a), the gas enters the fully polarized state. For more
positive �µ, the gas becomes fully polarized in the ↑ direction
at lower interaction strength. We can understand the form of
the boundary line at �µ > 0 by examining the species Fermi
energies εFσ = µ + σ�µ − gn−σ . At g = 0 the Fermi ener-
gies are simply the chemical potentials, so n↑ > n↓. The result
is that εF↓ is smaller than εF↑ at zero interaction, and decreases
more rapidly with increasing interaction strength. Thus the gas
becomes fully polarized more quickly in the ↑ direction as we
increase the chemical potential bias. An analogous situation
occurs in the bottom half of Fig. 1(a), where ↑ and ↓ swap roles
in the argument above. The line separating these two regimes
is �µ = 0. As the interaction strength is increased along this
line, the magnetization remains pinned at zero until kFa ≈ 2.04,
at which point a ferromagnetic instability develops and the gas
can become polarized in any direction. The instability to full
polarization at kFa = 3π/4 coincides with the cusped junction
of the fully polarized region boundary.

When we introduce a mass imbalance, for any chemical
potential and interaction strength, the saddle-point solutions
have φ⊥ = 0. The phase behavior shown in Figs. 1(b) and 1(c)
is then obtained using the zero temperature mean-field Eq. (5).
At zero interaction strength when there is no chemical
potential imbalance, the number density of the species is
nσ = (

√
2/3π2h̄3)m3/2

σ µ3/2, and so an increase in the mass
imbalance alone will bias the system toward the heavy spin
species. Then, as we increase the interaction strength, the
Fermi energy εF↓ = µ − gn↑ of the minority lighter species
will fall more rapidly than that of the heavy species εF↑ =
µ − gn↓, and so the gas becomes fully polarized toward the
heavier species. With the heavier species becoming favored,
the border in Figs. 1(b) and 1(c) between the dominant heavy
and light spin polarization shifts downward toward the lighter
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FIG. 1. (Color online) The phase behavior in the grand canonical
ensemble with chemical potential imbalance �µ/µ and interaction
strength kFa for three different values of mass imbalance. The solid
red lines denote the onset of full polarization, into the phases shaded
light and dark gray for up (φz/ρ = 1) and down (φz/ρ = −1) spin,
respectively. The dashed purple boundary separates systems that
become polarized in the up-spin (above the dashed line, light blue
shading) or down-spin (below the dashed line, dark blue shading)
directions in the strongly interacting limit. Along the dashed purple
line itself the polarization remains constant until reaching the black
dot, past which polarization in either direction is equally favorable.

spin particles. In order to have neither species dominant at
full polarization, we need to introduce a chemical potential
imbalance that favors the lighter species, given by the implicit
equation

�µ

µ
= [(1 − r)(µ − �µ)]3/2 − [(1 + r)(µ + �µ)]3/2

[(1 − r)(µ − �µ)]3/2 + [(1 + r)(µ + �µ)]3/2
. (6)

If the chemical potentials are tuned according to Eq. (6),
then at low interaction strength the magnetization is pinned
to −�µ/µ. Increasing the interaction strength past a crit-
ical value (denoted by the black dot in Fig. 1) induces
a second-order phase transition in the magnetization; the
minimum in the grand potential at −�µ/µ bifurcates into
two equally favorable minima which move continuously to
full up and down polarization as we further increase the
interaction strength. Full polarization emerges at an interaction
strength

kFa = 3πh̄kF

2
√

2(1/m↑ + 1/m↓)
max

σ

(
µ−σ

(mσµσ )3/2

)
. (7)
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Having understood the behavior of the gas in the grand
canonical ensemble, we now disconnect the particle reservoirs
and study a gas in the canonical ensemble.

B. Canonical ensemble

We now investigate a gas confined so that the total number
of both species is held fixed. In a cold atom gas the number
of up and down particles are separately conserved, and so at
the ferromagnetic transition the gas splits into up- and down-
polarized domains. On increasing the interaction strength the
gas could potentially phase separate into majority up- and
majority down-spin domains to reduce contact between the two
species. The formation of this ferromagnetic state is governed
by the competition between the resulting fall in interaction
energy and a kinetic energy penalty due to the increased density
of each separate species.

A box of gas with fixed total particle numbers is described
by minimizing the total free energy. The free-energy density of
a single domain with particle densities n↑ and n↓ is obtained
from the grand potential Eq. (3) by substituting our mean-
field solutions Eq. (5) into the definition F = � + µ↑n↑V +
µ↓n↓V , which yields

F

V
= 3

5

(
3π2h̄3

√
2

)2/3
[

n
5/3
↑

m↑
+ n

5/3
↓

m↓

]
+ gn↑n↓. (8)

If there is no phase separation, the total free energy of the gas is
just that of a single domain. This state competes with a phase-
separated gas containing two domains, labeled A and B, with
a ratio of volumes γ , and particle densities nAσ and nBσ . The
total energy of the state is then F = γFA + (1 − γ )FB, and
the total particle numbers are Nσ = V (γ nAσ + (1 − γ ) nBσ ).
We then minimize the total free energy while fixing the Nσ ,
to determine whether the system phase separates, and if so
the properties of the individual domains. The resulting phase
diagrams are shown in Fig. 2.

To explore the phase behavior in the canonical ensemble,
and to establish a connection to the literature [9], we first
focus on the mass balanced case shown in Fig. 2(a). At
weak interactions the gas starts in the paramagnetic state. On
ramping the interaction strength through the Stoner criterion
at kFa = π/2, a system with zero net population imbalance
phase separates into two weakly but oppositely polarized
domains. The critical interaction strength for phase separation
is higher in the presence of a population imbalance due to
the larger kinetic energy barrier that must be overcome for
further polarization to form. A fully polarized phase forms at
kFa = 3π/27/3, which is in accordance with Refs. [6] and [9].

On introducing a mass imbalance the phase diagrams tilt
so that when the population imbalance is toward the lighter
species, the onset of full phase separation takes place at smaller
kFa. To understand this, we first derive an expression for
the interaction strength at which the system becomes fully
polarized. At this point, there is an A phase composed entirely
of the heavier ↑ particles and a B phase of the lighter ↓
particles. Just before the transition to full polarization, there
will still be a ↓ particle in the A phase. This has interaction
energy gfpn↑. If that atom transits into phase B, it sits on
top of the Fermi surface, with an energy penalty Dn

2/3
↓ /m↓,
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FIG. 2. (Color online) The phase behavior in the canonical
ensemble with interaction strength kFa and net population imbalance
(N↑ − N↓)/(N↑ + N↓) for three different values of mass imbalance r .
The light blue regions (Single Ph.) correspond to a paramagnetic gas,
white (Ph. Sep) to a two-phase coexistence between two partially
polarized gases, and dark gray (Ph. Sep, | φz

ρ
| = 1) to a two-phase

coexistence between two fully polarized up and down spin gases.

where D = 35/3π4/3h̄2/21/35. At the transition to full polar-
ization the particle makes this passage without hindrance, and
therefore these two energies are equal gfpn↑ = Dn

2/3
↓ /m↓.

This implies that the interaction strength at the phase tran-
sition is gfp = Dn

2/3
↓ /m↓n↑ = Dn

2/3
↑ /m↑n↓; to deduce the

second equality we have repeated the argument for down-
spin particles. The second equality implies that n

5/3
↓ /m↓ =

n
5/3
↑ /m↑, which confirms that the two regions have equal

pressure.
We now use the above expressions to explain the tilt in the

fully polarized phase boundary Figs. 2(b) and 2(c). To go from
population balance to a system imbalanced toward the light
particles, we imagine converting a region of heavy particles
into light. However, for a given density, the lighter particles
exert a greater degeneracy pressure P ∝ n5/3/m than heavier
particles and so the internal pressure within the system must
increase. This compresses both the light and heavy particle
domains, and since n

5/3
↓ /m↓ = n

5/3
↑ /m↑ the overall density of

both phases must increase by the same ratio. Therefore, upon
biasing the population toward the lighter species, the critical
interaction strength gfp ∝ n

2/3
↓ /n↑ must decrease, thus tilting

the phase boundary.
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IV. TRAPPED GEOMETRY AND EXPERIMENTAL
OBSERVATION

Having understood the behavior in the canonical and grand
canonical ensembles in a uniform background potential, we
are well positioned to study the experimental realization of the
gas in a harmonic trap potential V (R) = ωR2. We employ the
local-density approximation and so assume that the properties
of the gas at radius R are determined by substituting a local
chemical potential µσ (R) = µσ − V (R) into our mean-field
relations Eq. (5). Moving outward from the center of the trap,
the system parameters trace trajectories on the grand canonical
phase diagrams (Fig. 1). An immediate corollary is that the gas
becomes polarized only along the quantization axis, and so the
gas separates into domains of light and heavy particles. The
chemical potentials µσ at the center of the trap are chosen to
ensure that the cloud contains a fixed total number of atoms,
and then the properties of the gas are entirely determined by the
interaction strength and particle masses. In what follows, we
will be interested in four main trap observables: the number
density profiles of the two species, the total trap size, and
loss rate, which can all be measured by imaging the spatial
distribution of the atoms in situ, and the total kinetic energy,
measured by tracking the profile of the atoms following a
ballistic expansion. Following Ref. [18], we model the loss rate
density according to ϒn↑n↓a6, where ϒ contains the residual
mass and number density terms. ϒ has a nonmonotonic mass
ratio dependence [18], leading to a dramatic suppression of
loss rate for moderately large mass imbalances (for example,
a gas containing 40K and 6Li has m↑/m↓ = 20/3, which we
show reduces loss by at least a factor of 20).

We are interested in how mass imbalance affects these
four experimental observables, but to contrast our results with
earlier work, we first review the mass-balanced case. After that,
we introduce mass imbalance and expose unique signatures of
the ferromagnetic phase.

A. Mass-balanced gas

We start by examining a trap with a two-component Fermi
gas with mass balance, but variable population imbalance. To
understand the corresponding trends in Fig. 4 (comparing solid
red curves in the same row), it is first useful to note how the
species are redistributed in the trap as we increase the repulsive
interaction strength.

Density profiles. At zero interaction, both species have
identical smooth distributions in the trap. Upon increasing
kFa, the species spread themselves more thinly across the
trap to reduce repulsion. As the interaction strength passes a
critical threshold, magnetic domains are formed in the center of
the trap via a spontaneous symmetry breaking [26]. However,
because the density (and hence effective interaction strength)
decreases at larger radii, the gas remains paramagnetic there.
The width of this outer paramagnetic region falls as ∼1/(kFa)2

in the large kFa limit. On introducing a population imbalance,
some of the minority-spin particles are driven to larger radii
with increasing kFa. This is because the minority species
feels an interaction energy proportional to the density of the
majority species, which overcomes the trapping potential. For
large enough kFa, domains form in the central regions of the

trap. These become fully polarized as the interaction strength
continues to increase. In this fully polarized limit there is
no overlap between the species so the interaction energy
disappears and both species can be found in domains anywhere
across the trap.

Cloud size. In the noninteracting limit, a cloud with a
population imbalance contains more of the majority-spin
species so has a greater initial radius. Initially, cloud size
increases linearly at small kFa as the atoms repel and spread
themselves more sparsely through the trap. After the atoms
enter ferromagnetic domains, firstly at the center and later
across the entire trap, the cloud size asymptotes toward its large
kFa limit. At strong interactions the fully polarized domains
contain effectively a noninteracting gas and so the cloud size
is the same as for the population balanced case.

Kinetic energy. At zero interaction strength the total kinetic
energy of each species is EKσ = 2−13/634/3ω1/2h̄N

4/3
σ /m1/2. A

population imbalance deposits particles on top of the majority-
spin Fermi surface increasing its kinetic energy, whilst the
minority-spin species kinetic energy falls. The mass-balanced
curves in Fig. 4 show an initial decrease in kinetic energy
against kFa as the atoms repel and spread themselves more
thinly across the trap. However, the onset of ferromagnetism
drives up the kinetic energy because identical fermions are
confined at higher densities within polarized domains. At
strong interactions the gas separates into independent fully
polarized domains, so the kinetic energy of the cloud plateaus
out.

Loss rate. The loss rate ϒn↑n↓a6 initially rises with
interaction strength since it is proportional to (kFa)6. At
the ferromagnetic transition the two species are confined to
separate domains suppressing the factor n↑n↓ and the loss rate
falls. Introducing an initial population imbalance also reduces
the factor n↑n↓, resulting in a lower loss rate at all interaction
strengths.

B. Mass-imbalanced gas

Having understood the behavior of a trapped gas with mass
balance, we now have a firm platform from which to study
a gas with mass imbalance. The imbalance is introduced by
replacing the ↑ species with a more massive particle, while
keeping the mass of the ↓ species the same. In Fig. 4 and below
we catalog and analyze the resulting changes that could offer
experimentalists both a handle to reduce losses, and unique
signatures of ferromagnetic ordering.

1. Density profiles

In Fig. 3 we examine the density profiles of the trapped
atomic gas with a mass imbalance of m↑/m↓ = 3/2. In
Fig. 3(a) at small interaction strength each species is supported
within the cloud mostly by its own internal Fermi degeneracy
pressure h̄2(6π2)2/3n

5/3
σ /5mσ . As the degeneracy pressure is

lower for the heavy species, they are denser at the trap center
than the light species. Increasing the interaction strength
through Figs. 3(b) and 3(c) expels the lighter particles to larger
radii, while the heavy particles become more concentrated
at the center. Raising the interaction strength still further in
Fig. 3(d) leads to full polarization of the heavy particles in
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FIG. 3. (Color online) Trap profiles for a gas at various interaction strengths with a mass imbalance m↑/m↓ = 3/2. For a cloud with
N↑/N↓ = 1, (a)–(e) show the density of the heavier particles (dotted) and the density of lighter particles (solid) against radius. The axes are
normalized by ñ, the density of the heavier particles at the center of the trap when kFa = 0, and R̃, the cloud size when kFa = 0. (f)–(j) show
the density profiles for a cloud with (N↑ − N↓)/(N↑ + N↓) = 0.9. At the center a grand canonical phase diagram reproduced from Fig. 1 shows
dotted trajectories in parameter space corresponding to some of the trap profiles and (k) is referenced in the text.

the center of the trap, full light particle polarization at the
edge of the trap, and an intermediate density discontinuity.
At this point the trajectory (d) in Fig. 3 passes through the
point denoting the ferromagnetic instability. By Fig. 3(e) the
entire gas has become fully polarized at kFa ≈ 3.3, whereas in
the mass-balanced case the gas never became fully polarized.
To understand why the heavy particles congregate at the
trap center, imagine instead that the heavy particles come to
dominate the outer regions of the trap. This would require the
chemical potential of the heavier species to be larger than
that of the lighter species. However, looking at the phase
diagram Fig. 3, any trajectory (k) with positive chemical
potential imbalance curves upward, which implies that the
heavier particles dominate the whole of the trap in the full
polarized limit. To give a population of light particles we must
instead choose a trajectory [such as (e)] that curves downward,
driving the heavy particles to the trap center. The congregation
of the heavy particles at the trap center could be monitored
using density contrast imaging so would give a clear signature
of ferromagnetic ordering.

2. Cloud size

We now use the intuition developed from studying the
density profiles to explore the variation of the cloud size. We
first focus on the behavior of the atoms in a noninteracting
and also a strongly interacting cloud. Second, we will study
two important features that appear at intermediate interaction
strengths: the emergence of a local maximum in cloud size,
and a gradient discontinuity in the cloud size.

Throughout our study of mass imbalance we have opted
to keep the mass of the light species constant and increase
the mass of the heavy species. As we see in Fig. 3(a), at zero
and weak interactions the lighter species is the outermost in
the trap whenever the population is not strongly biased toward
the heavy particles. Therefore, in Figs. 4(a) and 4(b), as we in-
crease mass imbalance, the cloud size of the noninteracting gas
is always the same. However, in Fig. 3(f), we see that if there

is sufficient population imbalance toward the heavier species,
they can instead be the outermost species. The crossover can
be deduced from the exact expression for the cloud size in the
noninteracting limit 31/625/12h̄1/2ω−1/4 maxσ (N1/6

σ /m
1/4
σ ).

We now turn to study the opposite limit of a strongly
interacting gas. As seen in Figs. 3(e) and 3(j), all the atoms
are in fully polarized domains so the cloud size plateaus as a
function of interaction strength. The heavy particles are found
in the trap center and their degeneracy pressure supports an
outer shell of the light particles. Therefore, if the mass of
the heavier particles is increased, their density must increase
to retain the same degeneracy pressure P ∝ n5/3/m, thereby
shrinking the cloud. We also note that the heavy particles have
a higher density than the light, and so biasing the population
toward the heavier species decreases the overall size of the
cloud.

After summarizing the behavior of the cloud size at weak
and strong interactions, we are well positioned to highlight two
nonmonotonic features that arise at intermediate interaction
strengths: first, a gradient discontinuity seen in Figs. 4(c)
and 4(d), and second, a local maximum at intermediate
interaction strength in Figs. 4(a) and 4(b).

3. Cloud size gradient discontinuity

The discontinuity in the gradient of the cloud size is visible
in Figs. 4(c) and 4(d) at kFa ≈ 1 and kFa ≈ 2, respectively.
For weakly interacting clouds with a sufficient population
imbalance toward the heavier species, Fig. 3(f) shows that the
heavier species extends to greater radii than the lighter species.
However, at strong interactions in Fig. 3(j) the lighter species
exists exclusively at large radii. We monitor the expulsion
of the light atoms through the series of density profiles and
trajectories [Figs. 3(g) and 3(h)]. As the outside of the light
particle cloud moves past the outside of the heavy particle
cloud, it raises the rate at which the cloud size increases,
thus introducing the gradient discontinuity. The trajectories
(g) and (h) in Fig. 3 flip from downward to upward curvature
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FIG. 4. (Color online) A table of graphs with rows showing the cloud size (Rtot), kinetic energy (EK) per particle of light and heavy species,
and loss rate (�) as a function of interaction strength. The columns refer to population imbalances of N↑/N↓ = {1/3,1,3,19}. Each graph
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at this point. The kink is guaranteed to emerge if at zero
interaction, the heavier species persists to the largest radius,
that is, µ↑ > µ↓. This is equivalent to the condition that
N↑/N↓ > m

3/2
↑ /m

3/2
↓ .

4. Cloud size local maximum

When the trapped gas has a mass imbalance in Figs. 4(a)
and 4(b), the cloud size has a local maximum with rising
interaction strength. Having earlier understood that cloud size
increases with kFa at small interactions, to study the emergence
of a local maximum in the cloud size we focus on why the cloud
size decreases on increasing the interaction strength from the
putative local maximum. In this limit the gas is almost fully
phase separated, having a central region made up entirely of
heavy particles, followed by a density discontinuity to n↓c at
some radius Rc, outside which light particles dominate but
contain a small number, δN↑, of the heavier particles.

As kFa is increased between Figs. 3(d) and 3(e), these outer
heavy particles are forced into the trap center. This leads to
an increase in local light particle Fermi energy of gδN↑, so
a number ∼δN↑gν↓ of lighter particles move to the position
of the shell from larger radii, where ν↓ is the density of states
at the shell. This expulsion occurs when gν↓ = 1, which is
consistent with the ferromagnetic transition, and so we deduce
that δN↑ lighter particles move in from larger radii to fill the
void left by the transfer of δN↑ heavier particles to the center
of the trap. With space cleared for light particles, the cloud
size falls by δN↑/4πR2

c n↓c.
However, a second counteracting effect occurs. As δN↑

heavy particles are absorbed by the central phase region,
its size increases, inflating the cloud by δN↑/4πR2

c n↑c =
δN↑(m↓/m↑)3/5/4πR2

c n↓c, where we have invoked pressure
conservation at the boundary so n↑c = n↓c(m↑/m↑)3/5. In the
presence of a mass imbalance this expansion is less than the fall
in size of the outer particles, and so overall the cloud shrinks
by δN↑(1 − (m↓/m↑)3/5)/4πR2

c n↓c, thus forming the cloud
size local maximum. Finally, we notice that with mass balance
m↑/m↓ = 1 we predict that there is no fall in the cloud size
upon approaching full polarization, which is consistent with
our plots in Figs. 4(a)–4(d).

5. Kinetic energy

The variation of kinetic energy with interaction strength
in Figs. 4(e)–4(l) shows strong trends with changing mass
imbalance. When a heavier species is introduced, the kinetic
energy of that species at zero interaction strength falls as
EK↑ = 2−13/634/3ω1/2h̄N

4/3
↑ /m

1/2
↑ . Figures 4(i)–4(l) shows

that, for any given population imbalance, a greater heavy
particle mass leads to a lower kinetic energy at large kFa. This
occurs because, for nonzero mass imbalance, the central heavy
particle domain of the gas has a kinetic energy per particle
∼n

2/3
↑ /m↑. However, increasing the mass of the heavier

species increases the central density to maintain pressure sup-
port. Pressure balance at the interface of heavy and light phase
regions demands (n↑/n↓)2/3 = (m↑/m↓)2/5, which suggests
that the kinetic energy per particle is ∼n

2/3
↓ m

−2/5
↓ m

−3/5
↑ . Since

the density distribution n↓ of the light particles varies slowly

with m↑, the heavy kinetic energy per particle falls with mass
as ∝m

−3/5
↑ .

6. Loss rate

In a study of three-body losses [18] in the presence of
mass imbalance, it was found that the loss process is greatly
suppressed for large mass imbalance. We see in Figs. 4(m)–
4(p) that clouds with the largest mass imbalance (m↑/m↓ =
20/3) have significantly reduced three-body losses. Exper-
iments on clouds with a lower loss rate will have longer
to reach equilibrium and so could potentially better reflect
theoretical predictions. Moreover, mass imbalance also drives
a double maximum in loss rate against kFa, for example, when
m↑/m↓ = 3/2 in Fig. 4(p). We now explore this feature using
our trap profiles in Fig. 3. Increasing the interaction strength
from zero intuitively leads to an initial increase in loss rate
ϒn↑n↓a6. At the interaction strength for Fig. 3(g), the light
particles are expelled to larger radii where heavier particles
are less dense, so the three-body loss rate falls. However,
following this, as the interaction strength is increased still
further, the loss rate ∝(kFa)6 rises again until the interaction
strength is sufficient in Fig. 3(j) to finally completely expel the
light particles out of the heavy particle region. At this point
the loss rate falls completely to zero. This system therefore
offers a fully polarized cloud that is also stable to three-body
losses, which is not seen with mass balance since even at high
interaction strength the gas is always paramagnetic in the outer
regions, thus giving a finite loss rate.

There is also a two-body loss process [4] that offers a
competing many-body instability to the Feshbach molecules
seen on the BEC-BCS crossover. Although the instability
appears to be important in the equal mass case, in the presence
of population or mass imbalance it is known that the superfluid
gap is reduced [27]. Therefore, we expect that the two-body
loss rate should also fall.

V. TEXTURED PHASES AND PERPENDICULAR
MAGNETIZATION

We now study the stability of our uniform mean-field states
to two kinds of perturbation. First, we address the possibility
for spontaneous in-plane polarization. Second, we study the
opportunity for a spin spiral state to emerge as a ground-state
instability of the imbalanced Fermi seas. Third, in the recent
experimental study one tactic to minimize three-body losses
was to rapidly ramp the interaction strength, so we search for
the most unstable collective modes following a quench. All
three of these instabilities can be studied through the magnetic
susceptibility, which we first derive below.

Starting with Eq. (2), we expand the magnetization fields
in small perturbations δφω,q around a stationary and homoge-
neous saddle-point solution φ. From Sec. III A the mean field
φ is aligned along the z axis. There are no linear terms in δφω,q,
so to second order we get a change in the action of

δS = g
∑
ω,q

|δφω,q
⊥ |2

[
1 + g

2
(�ω,q

↑↓ + �
ω,q
↓↑ )

]

+ g
∑
ω,q

∣∣δφω,q
z

∣∣2

[
1 − g2(�ω,q

↑↑ �
ω,q
↓↓ )

1 − g

2 (�ω,q
↑↑ + �

ω,q
↓↓ )

]
, (9)
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where �
ω,q
αγ = 1

βV

∑
ω′,q′ [iω′ − ξα(q′)]−1[iω′ + iω − ξγ (q′ +

q)]−1, and ξσ (p) = p2/2mσ − µσ + gn−σ . To recover the
Stoner criterion we examine the ω = 0 and q = 0 z chan-
nel, where �0,0

σσ = −νσ , and the density of states νσ is
evaluated at the σ species Fermi surface. This then gives
δS = g|δφ0,0

z |2(1 − g2ν↑ν↓)/[1 + g(ν↑ + ν↓)/2], which has a
ferromagnetic instability at g

√
ν↑ν↓ = 1.

A. Perpendicular polarization

An SU(2) spin symmetric system can become polarized in
any direction. However, if SU(2) symmetry is broken through
mass and/or chemical potential imbalance then numerics show
that φ⊥ = 0. Here we verify this result analytically by showing
that a system strongly polarized along the quantization
axis is always stable against the formation of perpendicular
polarization φ⊥.

Starting from Eq. (9), the system is stable against in-plane
polarization only if η ≡ 1 + g�

0,0
↑↓ > 0. At zero temperature,

we find that

�
0,0
↑↓ = − m3/2

√
2π2h̄3

1 − r2

r

[√
εF↑(1 + r) − √

εF↓(1 − r)

+� arctan

(√
εF↓(1 − r) − √

εF↑(1 + r)

� + �−1
√

εF↓εF↑(1 − r2)

) ]
, (10)

with � = [�µ + gφz)(1 − r2)/r]1/2, and εFσ =
max (0,µσ − gn−σ ). In the presence of population and
mass balance we find that η = 0 in the polarized regime
(g > 1/ν). Therefore, SU(2) symmetric systems are
susceptible to transverse polarization.

We now show that perpendicular magnetization can-
not spontaneously develop when a mass- or population-
imbalanced system is strongly polarized along the z axis. An
instability only emerges if η turns negative, so our strategy is
to bound η from below. Without loss of generality we focus
on the ↑ spin-polarized system. η decreases with g right up to
the fully polarized boundary, so we substitute in the value of
g at full polarization given by Eq. (7). This transforms η into
an increasing function of �µ/µ, so we use the smallest value
of �µ/µ consistent with ↑ spin polarization given by Eq. (6).
This allows us to bound η from below by

η � 36r2

175
− 8r3

2625
> 0 for 0 < |r| � 1. (11)

The increasing powers of r come from solving Eq. (6) for
�µ/µ using series. As η > 0 the system is stable against
perpendicular polarization if the SU(2) symmetry is broken by
mass or population imbalance. Furthermore, the perpendicular
magnetization fluctuations have a gapped spectrum, whereas
in the mass-balanced case they are soft [9].

B. Textured phases at mean-field level

To verify that the system is not unstable to the formation of
a textured phase, we first study a spin spiral with polarization
along the quantization axis. We focus on long wavelength
spirals so expand in small q � pF to find that the longitudinal
susceptibility is �

0,q
σσ = mσ

2π2 (−pFσ + q2/12pFσ ). Substituting

this into Eq. (9) one finds the resulting coefficient of q2 is
always positive, and so a textured phase only serves to increase
the coefficient of |δφ0,q

z |2. Therefore, a spin spiral state is less
energetically favorable than a uniform ferromagnetic state. We
have also verified that a similar argument holds for spin spiral
phases with in-plane polarization.

C. Dynamical phase formation

One tactic to reduce three-body losses in the ferromagnetic
gas is to study the dynamics immediately following an
interaction strength quench. The mass-balanced ultracold
atomic gas is predicted to form unstable collective modes [26],
and here we explore the mass-imbalanced case. To obtain the
wave vector q and growth rate ωq of the unstable modes, we
search for the poles in the magnetization propagator, which
are the solutions to

(z) : 1 − g2�
ω,q
↑↑ �

ω,q
↓↓ = 0,

(12)
(⊥) : 1 + g

2
(�ω,q

↑↓ + �
ω,q
↓↑ ) = 0.

The growth rate relation for modes along the quantization axis
is given by solving (z), whereas the relation for perpendicular
modes is given by solving (⊥). The polarization �

ω,q
αβ is as

defined immediately below Eq. (9), except with g = 0.
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FIG. 5. (Color online) (a) shows the growth rate ωq as a function
of wave vector q for collective modes at values of the dimensionless
interaction strength kFa/kFac − 1 = {0.02,0.06,0.10}. Here kFac is
the critical interaction strength of the Stoner transition, given in the
general mass- and population-imbalanced case by the boundary in
Fig. 1. The solid red curves correspond to the mass-balanced gas, and
the dashed blue lines to a gas of 6Li and 40K, where the chemical
potentials have been tuned to give population balance at kFa = 0.
(b) Summarizes the behavior of mode wave vector (primary y axis)
and maximum growth rate (secondary y axis) in (a). The axes are
normalized by the Fermi wave vector and chemical potential of the
6Li atoms.
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We calculate these susceptibilities computationally. In
Fig. 5(a) we plot the frequency against wave-vector relations
for the z direction, and compare those with the mass-balanced
case. The curves in Fig. 5(a) reveal the most unstable mode
with largest growth rate ωq has a well-defined maximum at
wave vector q = qmax. In the context of experiment, we expect
the domains to be roughly of size ∼1/qmax, and have growth
rates ∼ωqmax .

We see in Fig. 5(b) that, for a particular normalized value
of the interaction strength, using the 6Li-40K mass-imbalanced
system does not affect the size of z domains, but does reduce
the rate of domain growth by a factor of ∼5 relative to a
mass balanced gas. However, in Fig. 4(n) we see that 6Li-
40K three-body losses were suppressed by a factor of ∼20
compared to a mass-balanced gas. Therefore, for the same
net loss the domains in a mass-imbalanced gas can undergo
∼4 = 20/5 times the growth. For the perpendicular direction,
the introduction of mass imbalance decreases domain size,
while increasing formation time.

VI. DISCUSSION

An ultracold atomic gas of fermions with repulsive inter-
actions offers investigators a unique flexible system in which
to realize itinerant ferromagnetism. Introducing a mass imbal-
ance between the two spin species drives unique distinctive

features in the experimental observables of the cloud size,
release energy, and loss rate that should help better characterize
the formation of a ferromagnetic phase. Furthermore, a mass
imbalance can strongly suppress the three-body loss rate that
plagues the formation of the ferromagnetic phase.

The presence of a mass imbalance also opens up different
opportunities to study collective phenomena beyond those that
can be realized in the standard Stoner model. Although we
showed that a spin-textured phase analogous to the Fulde-
Ferrell-Larkin-Ovchinnikov state in superconductors is not
formed at mean-field level, it has already been established
that fluctuations corrections drive its formation even in a
mass-balanced gas. The presence of a mass imbalance will
alter the Fermi surface nesting and could pose an interesting
direction for future research.
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