

Machine learning: *a priori* or *a posteriori*?

Gareth Conduit

Merge a priori computer simulations and physical laws with a posteriori experimental data

```
Exploit a priori property-property correlations
```

Train from **Sparse** datasets

Reduce costly experiments to accelerate discovery

Combustor in a jet engine

A posteriori black box machine learning for materials design

Strength

Train the *a posteriori* machine learning

Strength8

80555606

983443994881

A posteriori machine learning predicts material properties

Strength

Data available to model defect density

Composition and heat treatment space **30** dimensions

Requires **31** points to fit a hyperplane

Just **10** data entries available to model defect density

Ability for printing and welding are strongly correlated

Laser

Electricity

First predict weldability

1000 entries

Use 1000 weldability entries to understand complex composition \rightarrow weldability model

Use a posteriori weldability to a priori predict defects formed

Use 1000 weldability entries to understand complex composition \rightarrow weldability model

10 defects entries capture the simple weldability \rightarrow defect relationship

Two interpolations give composition → defects extrapolation

Use a priori CALPHAD to a priori predict strength

Use 100,000 CALPHAD results to model complex composition \rightarrow phase behavior

500 strength entries capture the phase behavior \rightarrow strength relationship

Two interpolations aid the composition \rightarrow strength extrapolation

Elemental cost < 25 \$kg⁻¹ Density < 8500 kgm⁻³ v' content < 25 wt% Oxidation resistance < 0.3 mgcm⁻² Defects < 0.15% defects Phase stability > 99.0 wt% y' solvus > $1000^{\circ}C$ Thermal resistance > $0.04 \text{ KO}^{-1}\text{m}^{-3}$ Yield stress at 900°C > 200 MPa Tensile strength at 900°C > 300 MPa Tensile elongation at $700^{\circ}C > 8\%$ 1000hr stress rupture at 800°C > 100 MPa Fatigue life at 500 MPa, 700°C > 10⁵ cycles

Composition and processing variables

Probabilistic neural network identification of an alloy for direct laser deposition Materials & Design 168, 107644 (2019)

Testing the defect density

Probabilistic neural network identification of an alloy for direct laser deposition Materials & Design 168, 107644 (2019)

Alchemite Analytics[™] platform for materials and chemicals with Intellegens released in September 2020

Machine learning tool embedded into Cerella[™] released in October 2020

Ansys / GRANTA Integrate machine learning into Granta MI[™]

Merge *a priori* computer simulations with *a posteriori* experimental data through *a priori* property-property relationships in a holistic design tool

Designed and experimentally verified alloy for direct laser deposition

Taken to market through startup Intellegens