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Machine learning: a priori or a posteriori?



Machine learning algorithm to

Merge a priori computer simulations and physical laws with a posteriori experimental data 

Exploit a priori property-property correlations

Train from sparse datasets

Reduce costly experiments to accelerate discovery



Combustor in a jet engine



A posteriori black box machine learning for materials design
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Train the a posteriori machine learning
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A posteriori machine learning predicts material properties
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Data available to model defect density

Composition and heat treatment space 30 dimensions

Requires 31 points to fit a hyperplane

Just 10 data entries available to model defect density



Ability for printing and welding are strongly correlated

Laser Electricity



First predict weldability

Use 1000 weldability entries to understand complex composition → weldability model

1000 entries



Use a posteriori weldability to a priori predict defects formed

Use 1000 weldability entries to understand complex composition → weldability model

10 defects entries capture the simple weldability → defect relationship

Two interpolations give composition → defects extrapolation

10 entries1000 entries



Use a priori CALPHAD to a priori predict strength

Use 100,000 CALPHAD results to model complex composition → phase behavior

500 strength entries capture the phase behavior → strength relationship

Two interpolations aid the composition → strength extrapolation

100,000 entries 500 entries



Elemental cost < 25 $kg-1

Density < 8500 kgm-3

γ’ content < 25 wt%

Oxidation resistance < 0.3 mgcm-2

Defects < 0.15% defects

Phase stability > 99.0 wt%

γ’ solvus > 1000˚C

Thermal resistance > 0.04 KΩ-1m-3

Yield stress at 900˚C > 200 MPa

Tensile strength at 900˚C > 300 MPa

Tensile elongation at 700˚C > 8%

1000hr stress rupture at 800˚C > 100 MPa

Fatigue life at 500 MPa, 700˚C > 105 cycles

Target properties



Cr 19% Co 4% Mo 4.9% W 1.2% Zr 0.05% Nb 3%

Al 2.9% C 0.04% B 0.01% Ni Expose 0.8 THT 1300ºC

Composition and processing variables



Microstructure

Probabilistic neural network identification of an alloy for direct laser deposition
Materials & Design 168, 107644 (2019)



Testing the defect density

Design
parameter

Probabilistic neural network identification of an alloy for direct laser deposition
Materials & Design 168, 107644 (2019)





Alchemite Analytics™ platform for materials and chemicals 

with Intellegens released in September 2020

Machine learning tool embedded into Cerella™ released in 

October 2020

Integrate machine learning into Granta MI™

Commercialization

intellegens



Summary

Merge a priori computer simulations with a posteriori experimental data 

through a priori property-property relationships in a holistic design tool

Designed and experimentally verified alloy for direct laser deposition

Taken to market through startup Intellegens
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