The realization of itinerant ferromagnetism in an atomic Fermi gas

Gareth Conduit¹, Ben Simons², Ehud Altman¹ & Curt von Keyserlingk³

1. Weizmann Institute of Science, 2. University of Cambridge, 3. University of Oxford

G.J. Conduit & B.D. Simons, Phys. Rev. A 79, 053606 (2009)
G.J. Conduit, A.G. Green & B.D. Simons, Phys. Rev. Lett. 103, 207201 (2009)
G.J. Conduit & B.D. Simons, Phys. Rev. Lett. 103, 200403 (2009)
G.J Conduit & E. Altman, Phys. Rev. A 82, 043603 (2010)
G.J. Conduit, Phys. Rev. A 82, 043604 (2010)

What is itinerant ferromagnetism?

Localized ferromagnetism: moments confined in real space

Itinerant ferromagnetism: electrons in Bloch wave states

Partially magnetised

Stoner instability with repulsive interactions

$$\hat{H} = \sum_{k\sigma} \epsilon_k c^{\dagger}_{k\sigma} c_{k\sigma} + g \sum_{kk'q} c^{\dagger}_{k\uparrow} c^{\dagger}_{k'+q\downarrow} c_{k'+q\downarrow} c_{k'\uparrow}$$

Following a mean-field approximation

$$E = \sum_{\mathbf{k},\sigma} \epsilon_{\mathbf{k}} n_{\sigma}(\epsilon_{\mathbf{k}}) + g N_{\uparrow} N_{\downarrow}$$

- A Fermi surface shift increases the kinetic energy and potential energy falls
- Ferromagnetic transition occurs if $g\nu > 1$

Conduit & Simons, Phys. Rev. A **79**, 053606 (2009) Jo, Lee, Choi, Christensen, Kim, Thywissen, Pritchard & Ketterle, Science **325**, 1521 (2009)

Not magnetised E $v_{\downarrow}(E)$

Ferromagnetism in solid state

Second order in iron & nickel

First order in ZrZn₂

Uhlarz et al., PRL 2004

Further phase reconstruction in ZrZn₂

Atomic gases: a new forum for many-body physics

• A gas of atoms simulates electrons in a solid

$$|F = 1/2, m_F = 1/2\rangle$$

🏓 U

Up spin electron

$|F = 1/2, m_F = -1/2\rangle$

Down spin electron

- Key experimental advantages:
 - Magnetic field controls interaction strength
 - Contact interaction
 - Clean system

Experimental evidence for ferromagnetism

Jo, Lee, Choi, Christensen, Kim, Thywissen, Pritchard & Ketterle, Science 325, 1521 (2009)

Further key experimental signatures

$$E_{\rm K} \propto n^{5/3}$$

$$\Gamma \propto (k_{\rm F}a)^6 n_{\uparrow} n_{\downarrow} (n_{\uparrow} + n_{\downarrow})$$

Jo, Lee, Choi, Christensen, Kim, Thywissen, Pritchard & Ketterle, Science **325**, 1521 (2009)

Outline

- Equilibrium analysis with mean field & fluctuation corrections
 - Fluctuation corrections lead to emergence of first order transition
- The Stoner transition in the presence of atom loss
 - Condensation of topological defects
 - Two-body atom loss
 - Renormalization of interaction strength
- Experimental protocols that circumvent three-body loss
 - Collective modes within a spin spiral
 - Ferromagnetism with mass imbalance

Mean-field analysis & consequences of trap

 Recovers qualitative behavior¹ but transition at k_Fa=1.8 instead of k_Fa=2.2

¹LeBlanc, Thywissen, Burkov & Paramekanti, Phys. Rev. A **80**, 013607 (2009) & GJC & Simons, Phys. Rev. Lett. **103**, 200403 (2009)

Fluctuation corrections

• Fluctuation corrections give $k_{Fa}=1.1$ and QMC $k_{Fa}=0.8$

Conduit & Simons, Phys. Rev. A **79**, 053606 (2009) & Conduit & Simons, Phys. Rev. Lett. **103**, 200403 (2009)

Outline: consequences of atom loss

- Equilibrium analysis with mean field & fluctuation corrections
 - Fluctuation corrections lead to emergence of first order transition
- The Stoner transition in the presence of atom loss
 - Condensation of topological defects
 - Two-body atom loss
 - Renormalization of interaction strength
- Experimental protocols that circumvent three-body loss
 - Collective modes within a spin spiral
 - Ferromagnetism with mass imbalance

Initial growth of domains

 Quench leads to domain growth [Babadi *et al.* arXiv:0908.3483], applies for k_Fa<1.06k_Fa_c

 Ferromagnetic quench deep beyond the spinoidal line leads to the condensation of topological defects

Condensation of topological defects

 Defects freeze out from paramagnetic state

 Defects grow as L ~ t^{1/2} [Bray, Adv. Phys. 43, 357 (1994)]

Ramp up interactions

Mutual annihilation of defects

Consequences of defect annihilation

Defect annihilation raises required interaction strength

Conduit & Simons, Phys. Rev. Lett. 103, 200403 (2009), Babadi et al. arXiv 0908.3482 (2009)

Two-body loss

Two-body mechanism

- Feshbach molecules can be formed by a two body process [Pekker, PRL 2010]
- Requires $k_{\rm F}^2/m < 1/2ma^2$, $k_{\rm F}a < 1/\sqrt{2}$

Three-body loss

Three-body mechanism

- A third-body can remove the excess energy
- Rate $\lambda'[n_{\uparrow}(\mathbf{r}) + n_{\downarrow}(\mathbf{r})]n_{\uparrow}(\mathbf{r})n_{\downarrow}(\mathbf{r})$ [Petrov 2003]
- In boson systems, three-body scattering drives the formation of a Tonks-Girardeau gas [Syassen *et al.*, Science **320**, 1329 (2009)]

Phase boundary with atom loss

• Atom loss raises the interaction strength required for ferromagnetism

Interaction renormalization with atom loss

Conduit & Altman, arXiv: 0911.2839; Huckans *et al.* PRL **102**, 165302 (2009)

Outline: consequences of atom loss

- Equilibrium analysis with mean field & fluctuation corrections
 - Fluctuation corrections lead to emergence of first order transition
- The Stoner transition in the presence of atom loss
 - Condensation of topological defects
 - Two-body atom loss
 - Renormalization of interaction strength
- Experimental protocols that circumvent three-body loss
 - Collective modes within a spin spiral
 - Ferromagnetism with mass imbalance

Alternative strategy: spin spiral

(b) Magnetic field gradient forms spin spiral

(c) Interactions cant the spiral

Spin spiral collective modes

 Exponentially growing collective modes if q<Q [GJC & Altman, PRA 82, 043603 (2010)]

$$\Omega(q) = \pm \left(\frac{1}{2} - \frac{2^{2/3} 3}{5k_F a}\right) q \sqrt{q^2 - Q^2}$$

Mass imbalance ferromagnetism

- Magnetic moment formed along quantization ε.....
- Modified Stoner criterion $g\sqrt{v_{\uparrow}v_{\downarrow}}=1$
- At zero interactions heavy particles have lower pressure P~n^{5/3}/m so more concentrated at center
- At strong interactions heavy particles at center and light particles at outside

Behavior in a trap

• At zero interaction strength atoms spread all over trap, at high interaction strength light atoms forced to outside

Unique signatures of ferromagnetism

• Expulsion creates unique signatures of ferromagnetism

 $k_{
m F}a$

Unique signatures of ferromagnetism

• Dramatically reduced loss

Summary

- Equilibrium theory provides a reasonable qualitative description of the transition
- Dynamical effects can provide a better description of ferromagnetism but also disrupt the ferromagnetic phase
- Circumvent three-body loss by studying the evolution of a spin spiral
- Suppress losses and give stronger signatures of ferromagnetism by studying mass imbalance
- Answer long-standing questions about solid state ferromagnetism and motivate new research arenas

Damping of fluctuations by atom loss

- Atom loss rate, $\lambda'[n_{\uparrow}(\mathbf{r}) + n_{\downarrow}(\mathbf{r})]n_{\uparrow}(\mathbf{r})n_{\downarrow}(\mathbf{r})$, is $\lambda'\chi(\mathbf{r}-\mathbf{r}')[c_{\uparrow}^{\dagger}(\mathbf{r}')c_{\uparrow}(\mathbf{r}') + c_{\downarrow}^{\dagger}(\mathbf{r}')c_{\downarrow}(\mathbf{r}')]c_{\uparrow}^{\dagger}(\mathbf{r})c_{\downarrow}^{\dagger}(\mathbf{r})c_{\downarrow}(\mathbf{r})c_{\uparrow}(\mathbf{r})$
- A mean-field approximation, N = n₁(r') + n↓(r') places interactions on same footing as interactions

 $S_{\text{int}} = (g + i\lambda \overline{N})c_{\uparrow}^{\dagger}(\mathbf{r})c_{\downarrow}^{\dagger}(\mathbf{r})c_{\downarrow}(\mathbf{r})c_{\uparrow}(\mathbf{r})$

 Also include atom source -iγc_σ[†]c_σ to ensure gas remains at equilibrium

Loss damps fluctuations so inhibits the transition

$$F = F_0 + \frac{1 - gv}{2v} m^2 + um^4 + vm^6 + (g^2 - \lambda^2 N^2) (rm^2 + wm^4 \ln|m|)$$

Phase-contrast imaging

- Phase-contrast imaging displays signatures of domain growth
- Domain size fixed across the sample

Outlook

- First order transition
- Textured phase

- Mass imbalance
- SU(N) spins
- Two-dimensional itinerant ferromagnetism

