Quantum critical itinerant ferromagnetism

Gareth Conduit

Gareth Conduit

Cavendish Laboratory

University of Cambridge

Two types of ferromagnetism

Gareth Conduit

- Localised ferromagnetism: moments localised in real space
 Ferromagnet
 Antiferromagnet
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 <liI
 I
 I
 I
 I</l
- *Itinerant ferromagnetism:* moments localised in reciprocal space

Not magnetised

Stoner model for itinerant ferromagnetism

Gareth Conduit

- Repulsive interaction energy U=gn₁n₁
- A ΔE shift in the Fermi surface causes:

(i) Kinetic energy increase of $\frac{1}{2}v\Delta E^2$

(ii) Reduction of repulsion of $-\frac{1}{2}gv^2\Delta E^2$

• Total energy shift is $\frac{1}{2}v\Delta E^2(1-gv)$ so a ferromagnetic transition occurs if gv>1

Ferromagnetism in iron

Gareth Conduit

• The Stoner model has a second order transition of e.g. iron and nickel

Figure 1.2 Spontaneous magnetization plotted against temperature for iron and nickel.

which is characterised by:

- Smoothly varying magnetisation
- A divergence of length-scales (peaked heat capacity and susceptibility)

Fig. 9.20 Specific heat anomaly for nickel at its Curie point compared with the theoretical prediction.

Breakdown of Stoner criterion -- ZrZn₂ Gareth Conduit

• At low temperature and high pressure ZrZn, has a first order transition

Breakdown of Stoner criterion -- MnSi

Gareth Conduit

MnSi also displays a first order phase transition

Pfleiderer *et al.*, PRB 1997 Vojta *et al.*, 1999 Ann. Phys. 1999

Breakdown of Stoner criterion

Gareth Conduit

• At low temperature UGe₂, ZrZn₂, MnSi, and others are first order

• Here I describe two projects that investigate the first order behaviour:

(i) Probe the first order transition without the lattice

(ii) Motivated by the FFLO phase, apply the formalism to search for a putative textured phase

Landau expansion

Gareth Conduit

To describe the transition we expand the total energy in the magnetisation

$$F = r m^2 + u m^4 + v m^6$$

Analytical method

• System free energy $F = -k_{_{\rm R}} T \ln Z$ is found via the partition function

$$Z = \sum_{\{m(x,t)\}} \exp(-E[m(x,t)]/k_{\rm B}T)$$

the summation includes spatial and temporal fluctuations of the magnetisation

• Using only the average magnetisation:

 $m(x, t) = \overline{m}$

gives

$$F \propto (1 - g v) \bar{m}^2$$

i.e. the Stoner criterion

Consequences of fluctuations

$$Z = \sum_{\{m(x,t)\}} \exp\left(-E[m]/k_BT\right)$$

• We expand the energy to second order in fluctuations: $m \rightarrow \overline{m} + \phi$

$$Z = \sum_{\{\phi(x,t)\}} \exp\left(\frac{-1}{k_B T} \left(E\left[\bar{m}\right] + \phi^2(x,t) E''\left[\bar{m}\right] \right) \right)$$

 Larkin & Pikin [Zh. Eksp. Teor. Fiz. 1969] included auxiliary fluctuations of the lattice which introduced a negative magnetisation term, driving the transition first order

$$= \int \exp(-[rm^{2}+um^{4}+a\phi^{2}\pm 2am^{2}\phi]/k_{B}T)d\phi$$

= $\int \exp(-[rm^{2}+(u-a)m^{4}+a(\phi\pm m^{2})^{2}]/k_{B}T)d\phi$
~ $\exp(-[rm^{2}+(u-a)m^{4}]/k_{B}T)$

• Similarly here considering the soft transverse magnetic fluctuations drives the transition of the longitudinal first order

Fluctuation corrections

Gareth Conduit

The results give the following phase diagram

Uhlarz et al., PRL 2004

QMC calculations

- Fluctuation corrections are not exact and higher order terms might destroy the first order phase transition
- Exact (except for the fixed node approximation) Quantum Monte Carlo calculations confirmed a first order phase transition

Summary of uniform work

- Consideration of corrections due to fluctuations in magnetisation and density revealed a first order phase transition
- Nature of transition confirmed by Quantum Monte Carlo calculations
- Motivated by Fulde-Ferrel-Larkin-Ovchinnikov (FFLO) and experiment now examine a putative textured ferromagnetic phase
- Textured phase already considered in terms of a consequence of the lattice

 NbFe₂ displays antiferromagnetic order where it is expected to be ferromagnetic -- could this be a textured ferromagnetic phase?

NbFe

1st order

Gareth Conduit

• Resistance anomaly

• Consistent with a new crystalline phase

Grigera et al., Science 2004

Ginzburg-Landau analysis

• In analogy to FFLO¹ we can look at a Ginzburg-Landau analysis

$$F = r m^{2} + u m^{4} + v m^{6} + \frac{2}{3} u (\nabla m)^{2} + \frac{3}{5} v (\nabla^{2} m)^{2} - hm$$

- The first order transition is accompanied by a textured phase
- Consider the lowest order term in a Ginzburg-Landau expansion, which is a function of the wave vector *q* of the textured phase

$$F = \sum_{q} \alpha_{q} m_{q}^{2}$$

• When $\alpha_q > 0$ zero magnetisation is favourable, if $\alpha_q < 0$ a textured phase preempts the first order ferromagnetic transition

¹Saint-James *et al.* 1969, ²Buzdin & Kachkachi 1996

Analytical results

Gareth Conduit

• The phase diagram of the uniform system is

Analytical results

• Textured phase preempted transition with $q=0.1k_{r}$

QMC results

• Textured phase preempted transition and penetrated uniform phase

Summary

- Developed a field theoretic construction to understand the first order transition
- Ginzburg-Landau analysis of spin spiral textured ferromagnetic phase
- Confirmed the phases with QMC calculations
- Acknowledgements: Ben Simons & Andrew Green, EPSRC