An ab initio study of the Little-Parks effect in ultrathin cylinders

Gareth Conduit, Yigal Meir

Ben Gurion University & Weizmann Institute of Science

arXiv:1102.1604

BCS superconductivity in MgB₂

Monteverde et al., Science **292**, 75 (2001)

BCS superconductivity

KT transition conductivity

KT transition conductivity

Transition in highly disordered systems

Magnetoresistance peak [Sambandamurthy 04]

Little-Parks in a large diameter cylinder

 Cylindrical superconductor held at transition temperature and zero threading flux [Little & Parks, PRL 1962]

Little-Parks in a large diameter cylinder

Cylindrical superconductor held at transition temperature and threading flux is increased [Little & Parks, PRL 1962]

Little-Parks in a large diameter cylinder

Cylindrical superconductor held at transition temperature and threading flux is increased [Little & Parks, PRL 1962]

Little-Parks in a small diameter cylinder

• Reduce cylinder diameter to superconducting correlation length [Liu *et al.*, Science 2001; Wang *et al.*, PRL 2005]

Strategy to study superconductors

- Develop new formalism to:
 - Calculate exact net current flow
 - Extract the microscopic current flow
 - Account for phase and amplitude fluctuations
 - Develop algorithm that permits access to large systems
- Test the formalism against a series of well-established results
- Study the Little Parks effect and magnetoresistance peak

How to calculate the current

- General expression for the current [Meir & Wingreen, PRL 1992]
 - $J = \frac{\mathrm{i}e}{2h} \int \mathrm{d}\epsilon \Big[\mathrm{Tr} \left\{ \left(f_{\mathrm{L}}(\epsilon) \Gamma^{\mathrm{L}} f_{\mathrm{R}}(\epsilon) \Gamma^{\mathrm{R}} \right) \left(G_{\mathrm{e}\sigma}^{\mathrm{r}} G_{\mathrm{e}}^{\mathrm{a}\sigma} \right) \right\} + \mathrm{Tr} \left\{ \left(\Gamma^{\mathrm{L}} \Gamma^{\mathrm{R}} \right) G_{\mathrm{e}\sigma}^{<} \right\} \Big]$

Decoupling the interactions

• Negative U Hubbard model

1

$$\hat{H}_{\text{Hubbard}} = \sum_{i,\sigma} \epsilon_{i\sigma} c_{i\sigma}^{\dagger} c_{i\sigma} - \sum_{i} U_{i} c_{i\uparrow}^{\dagger} c_{i\downarrow}^{\dagger} c_{i\downarrow} c_{i\uparrow} c_{i\sigma} c_{j\sigma} + c_{ij}^{*} c_{j\sigma}^{\dagger} c_{i\sigma} c_{i\sigma} \right)$$

Decouple in density and Cooper pair channels

$$\rho_{i\sigma} = -|U_i|c_{i\sigma}^{\dagger}c_{i\sigma} \qquad \Delta_i = |U_i| \ c_{i\downarrow}c_{i\uparrow}$$

• Hamiltonian now contains single-body operators

$$\hat{\mathcal{H}}_{BdG} = \sum_{i,\sigma} (\epsilon_i + \rho_i) c_{i\sigma}^{\dagger} c_{i\sigma} - \sum_{\langle i,j \rangle,\sigma} \left(t_{ij} c_{i\sigma}^{\dagger} c_{j\sigma} + t_{ij}^* c_{j\sigma}^{\dagger} c_{i\sigma} \right) + \sum_i \left(\Delta_i c_{i\uparrow}^{\dagger} c_{i\downarrow}^{\dagger} + \bar{\Delta}_i c_{i\downarrow} c_{i\uparrow} \right) + \sum_i \frac{|\Delta_i|^2 + \rho_i^2}{U_i}$$

Diagonalizing the Hamiltonian

Hamiltonian now contains single-body operators

$$\hat{\mathcal{H}}_{BdG} = \sum_{i,\sigma} (\epsilon_i + \rho_i) c_{i\sigma}^{\dagger} c_{i\sigma} - \sum_{\langle i,j \rangle,\sigma} \left(t_{ij} c_{i\sigma}^{\dagger} c_{j\sigma} + t_{ij}^* c_{j\sigma}^{\dagger} c_{i\sigma} \right) + \sum_i \left(\Delta_i c_{i\uparrow}^{\dagger} c_{i\downarrow}^{\dagger} + \bar{\Delta}_i c_{i\downarrow} c_{i\uparrow} \right) + \sum_i \frac{|\Delta_i|^2 + \rho_i^2}{U_i}$$

• Energy eigenstates can be found from diagonalization of $\hat{\mathcal{H}}_{\mathrm{BgG}} = \frac{|\Delta|^2 + \rho^2}{U} + \left(\begin{array}{cc} c_{\uparrow}^{\dagger} & c_{\downarrow} \end{array}\right) \left(\begin{array}{cc} \epsilon + \rho & \Delta \\ \bar{\Delta} & -(\epsilon + \rho) \end{array}\right) \left(\begin{array}{cc} c_{\uparrow} \\ c_{\downarrow}^{\dagger} \end{array}\right) + \epsilon + \rho$

Accelerated Metropolis sampling

• To perform thermal sum calculate

$$\langle J \rangle = \sum_{\Delta,\rho} J [\Delta,\rho] e^{-\beta (E[\Delta,\rho]-E_0)}$$

- Propose new configuration of Δ and ρ , accept with probability $\exp(\beta E[\Delta_{old}, \rho_{old}] - \beta E[\Delta_{new}, \rho_{new}])$
- Calculating $E[\Delta, \rho]$ costs $O(N^3)$, where N is the number of sites
- New method calculates $E[\Delta, \rho] E[\Delta + \delta \Delta, \rho + \delta \rho]$ using a order MChebyshev expansion [Weisse 09] in $O(N^{0.9}M^{2/3})$ time

- Resistivity at the Kosterlitz-Thouless transition
- Nonlinear IV characteristics
- Length dependence of conductivity
- Andreev reflection
- Josephson junction
- Little-Parks effect in large diameter cylinder

Halperin & Nelson, J. Low Temp. Phys 1979 Ambegaokar *et al.*, PRB 1980

- Resistivity at the Kosterlitz-Thouless transition
- Nonlinear *IV* characteristics
- Length dependence
 of conductivity
- Andreev reflection
- Josephson junction
- Little-Parks effect in large diameter cylinder

- Resistivity at the Kosterlitz-Thouless transition
- Nonlinear *IV* characteristics
- Length dependence of conductivity
- Andreev reflection
- Josephson junction
- Little-Parks effect in large diameter cylinder

Ambegaokar & Baratoff, PRL 10, 486 (1963)

- Resistivity at the Kosterlitz-Thouless transition
- Nonlinear *IV* characteristics
- Length dependence of conductivity
- Andreev reflection
- Josephson junction
- Little-Parks effect in large diameter cylinder

- Resistivity at the Kosterlitz-Thouless transition
- Nonlinear *IV* characteristics
- Length dependence of conductivity
- Andreev reflection
- Josephson junction
- Little-Parks effect in large diameter cylinder

- Resistivity at the Kosterlitz-Thouless transition
- Nonlinear *IV* characteristics
- Length dependence of conductivity
- Andreev reflection
- Josephson junction
- Little-Parks effect in large diameter cylinder

- Resistivity at the Kosterlitz-Thouless transition
- Nonlinear *IV* characteristics
- Length dependence of conductivity
- Andreev reflection
- Josephson junction
- Little-Parks effect in large diameter cylinder

Little-Parks in a small diameter cylinder

Quantum phase transition hypothesis

Mean-field BCS transition hypothesis

Little-Parks in a small diameter cylinder

Theory:

Experiment:

Little-Parks in a small diameter cylinder

Theory:

Experiment:

Variation with diameter

Little-Parks in a small diameter cylinder

Little-Parks in a small diameter cylinder

0.5

0

1

 Φ/Φ_0

Evidence of phase reconstruction

Two superconducting regions

Superconducting current

1

Normal current

 $\langle \cos(\theta_1 - \theta_2) \rangle$

Three superconducting regions

Superconducting current

1

Normal current

 $\langle \cos(\theta_1 - \theta_2) \rangle$

Half flux quantum normal state

 $\langle \cos(\theta_1 - \theta_2) \rangle$

1

Magnetoresistance peak

 Study superconductor-insulator transition in dirty sample with perpendicular magnetic field

Magnetoresistance peak

 Study superconductor-insulator transition in dirty sample with perpendicular magnetic field

Clues: activated transport

• Activated transport $\rho = \rho_0 e^{T_1/T}$

Clues: current maps

• Weak links across superconducting puddles

Normal current

Net current flow

Working hypothesis

Sample entirely superconducting

Superconducting puddles have a charging energy and a tunneling barrier

Sample entirely normal

Summary & future prospects

- Developed new formalism that includes thermal phase fluctuations to calculate and probe transport in superconductors
- New numerical techniques permit access to large systems
- Tested formalism against a series of well established results
- Shown that superconductor-insulator transition in small diameter cylinders is driven by phase fluctuations
- Shown that magnetoresistance peak could be driven by condensation of superconducting puddles
- Flexibility allows us to study wide range of unexplained effects