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BCS superconductivity in MgB2

Monteverde et al., Science 292, 75 (2001)



  

BCS superconductivity



  

Kosterlitz Thouless transition
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KT transition conductivity
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KT transition conductivity
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Transition in highly disordered systems
 Magnetoresistance peak [Sambandamurthy 04]
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Little-Parks in a large diameter cylinder
 Cylindrical superconductor held at transition temperature and zero 

threading flux [Little & Parks, PRL 1962]
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Little-Parks in a large diameter cylinder
 Cylindrical superconductor held at transition temperature and 

threading flux is increased [Little & Parks, PRL 1962]
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Little-Parks in a large diameter cylinder
 Cylindrical superconductor held at transition temperature and 

threading flux is increased [Little & Parks, PRL 1962]
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Little-Parks in a small diameter cylinder
 Reduce cylinder diameter to superconducting correlation length

[Liu et al., Science 2001; Wang et al., PRL 2005]



  

Strategy to study superconductors
 Develop new formalism to:

− Calculate exact net current flow
− Extract the microscopic current flow
− Account for phase and amplitude fluctuations
− Develop algorithm that permits access to large systems

 Test the formalism against a series of well-established results
 Study the Little Parks effect and magnetoresistance peak



  

How to calculate the current
 General expression for the current [Meir & Wingreen, PRL 1992]
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Decoupling the interactions
 Negative U Hubbard model

 Decouple in density and Cooper pair channels

 Hamiltonian now contains single-body operators



  

Diagonalizing the Hamiltonian
 Hamiltonian now contains single-body operators

 Energy eigenstates can be found from diagonalization of



  

Accelerated Metropolis sampling
 To perform thermal sum calculate

 Propose new configuration of     and    , accept with probability

 Calculating              costs           , where      is the number of sites
 New method calculates                                             using a order

Chebyshev expansion [Weisse 09] in                     time

E [Δ ,ρ] O (N 3)

exp(βE [Δold ,ρold ]−βE [Δnew ,ρnew ])

E [Δ ,ρ]−E [Δ+δΔ ,ρ+δρ]

O (N 0.9M 2/3)

M

〈 J 〉=∑Δ ,ρ
J [Δ ,ρ]e−β(E [Δ ,ρ]−E0)

N

Δ ρ



  

Verification
 Resistivity at the

Kosterlitz-Thouless
transition

 Nonlinear IV
characteristics

 Length dependence
of conductivity

 Andreev reflection
 Josephson junction
 Little-Parks effect in

large diameter cylinder

Halperin & Nelson, J. Low Temp. Phys 1979
Ambegaokar et al., PRB 1980
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Little-Parks in a small diameter cylinder

 



  

Quantum phase transition hypothesis
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Mean-field BCS transition hypothesis
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Little-Parks in a small diameter cylinder

 Experiment:Theory:
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Variation with diameter

 



  

Little-Parks in a small diameter cylinder
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Little-Parks in a small diameter cylinder
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Evidence of phase reconstruction

  Experiment:

 Theory:
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Two superconducting
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regions
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Magnetoresistance peak

  Study superconductor-insulator transition in dirty sample with 
perpendicular magnetic field
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Magnetoresistance peak

  Study superconductor-insulator transition in dirty sample with 
perpendicular magnetic field
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Clues: activated transport

  Activated transport ρ=ρ0 eT I/T



  

Clues: current maps

  Weak links across superconducting puddles

Superconducting current Normal current
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Working hypothesis
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Summary & future prospects

  Developed new formalism that includes thermal phase fluctuations to 
calculate and probe transport in superconductors

 New numerical techniques permit access to large systems
 Tested formalism against a series of well established results
 Shown that superconductor-insulator transition in small diameter 

cylinders is driven by phase fluctuations
 Shown that magnetoresistance peak could be driven by condensation 

of superconducting puddles
 Flexibility allows us to study wide range of unexplained effects
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