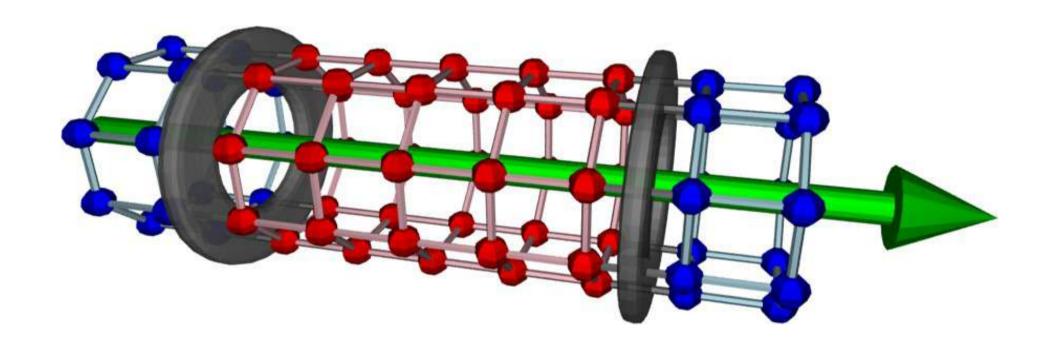
Modelling the magnetoresistance of disordered superconducting films

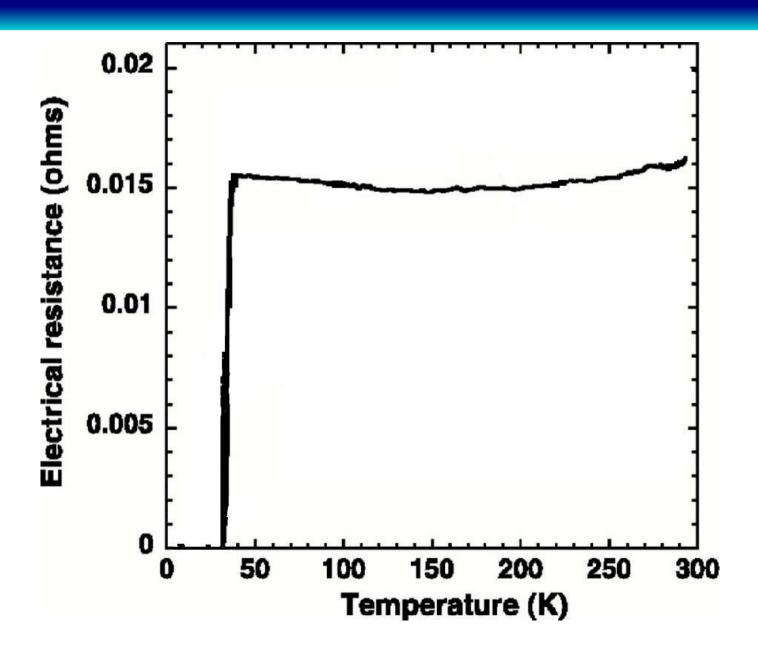


Gareth Conduit, Yigal Meir

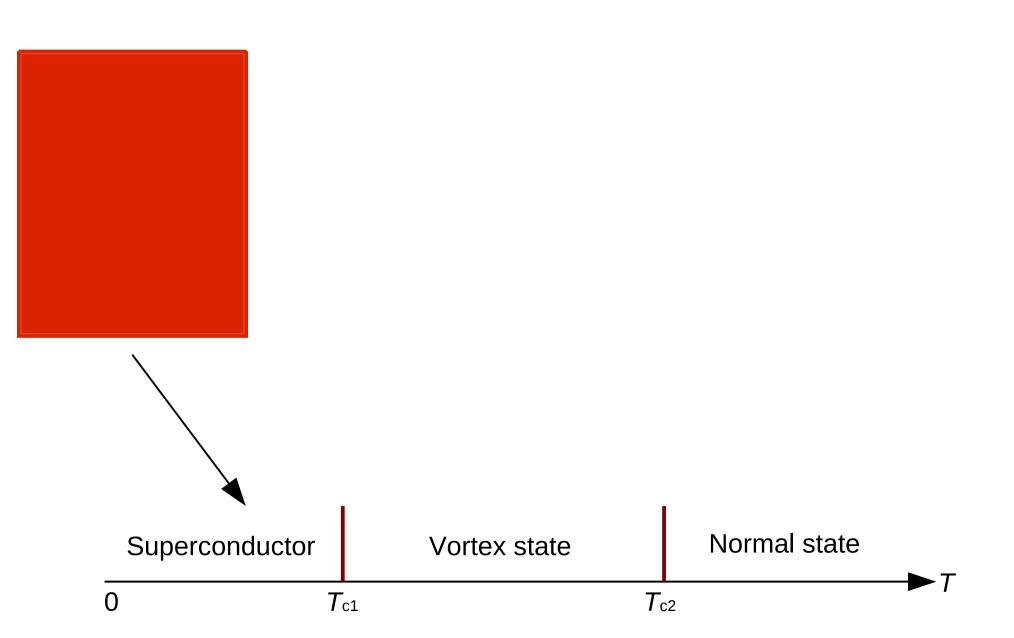
University of Cambridge & Ben Gurion University

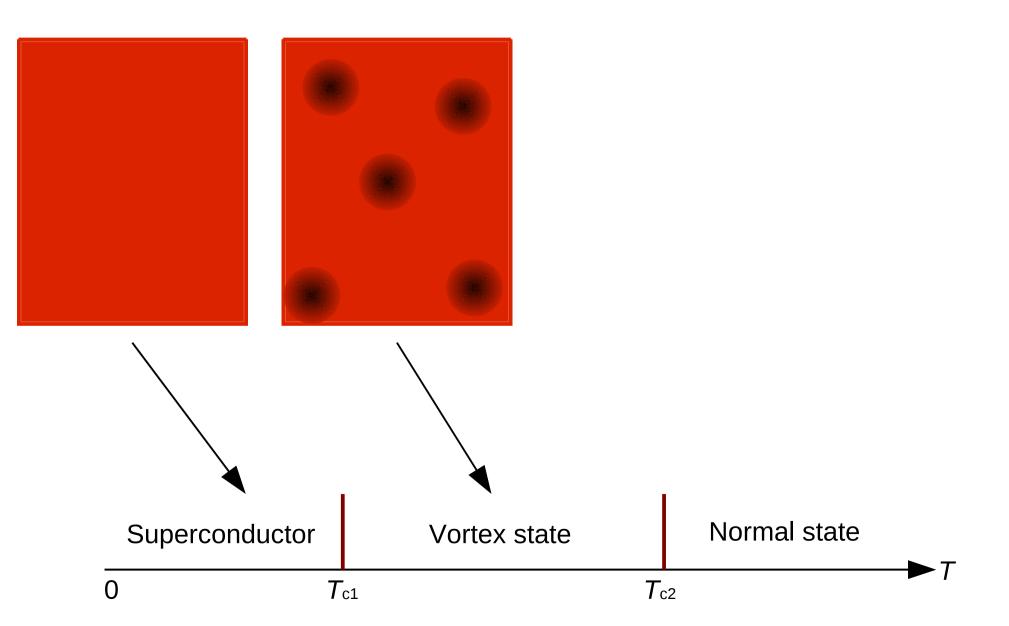
PRB 84, 064513 (2011); accepted for publication in Phys. Rev. Lett.

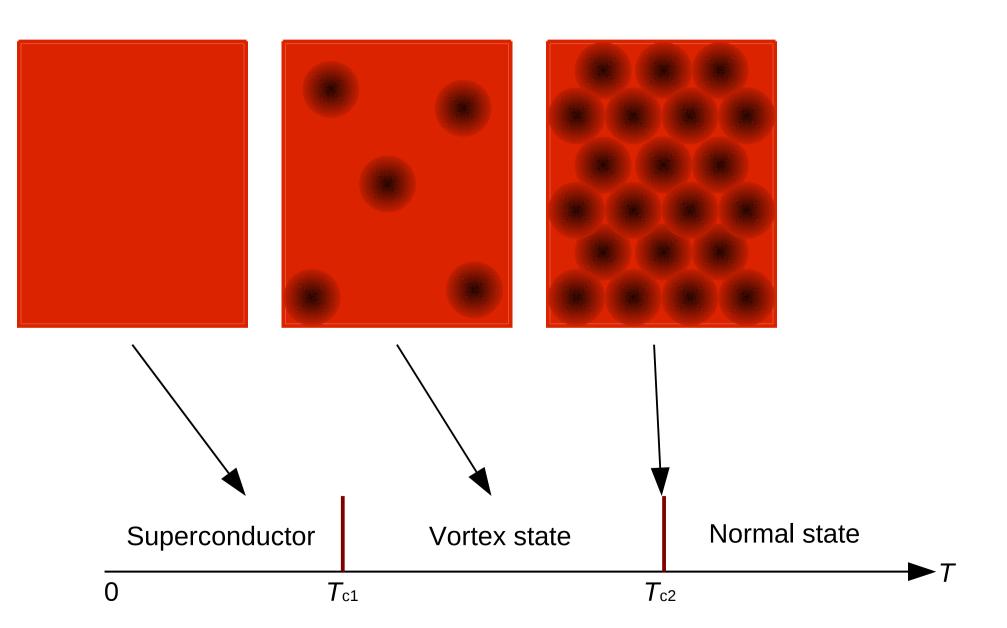
BCS superconductivity in MgB₂

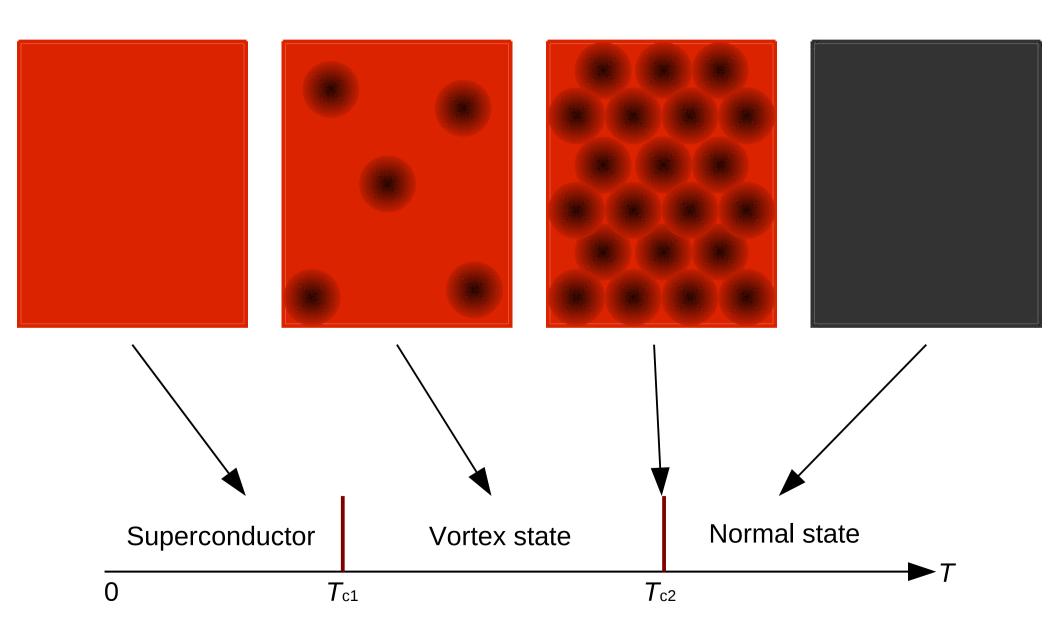


Monteverde et al., Science 292, 75 (2001)

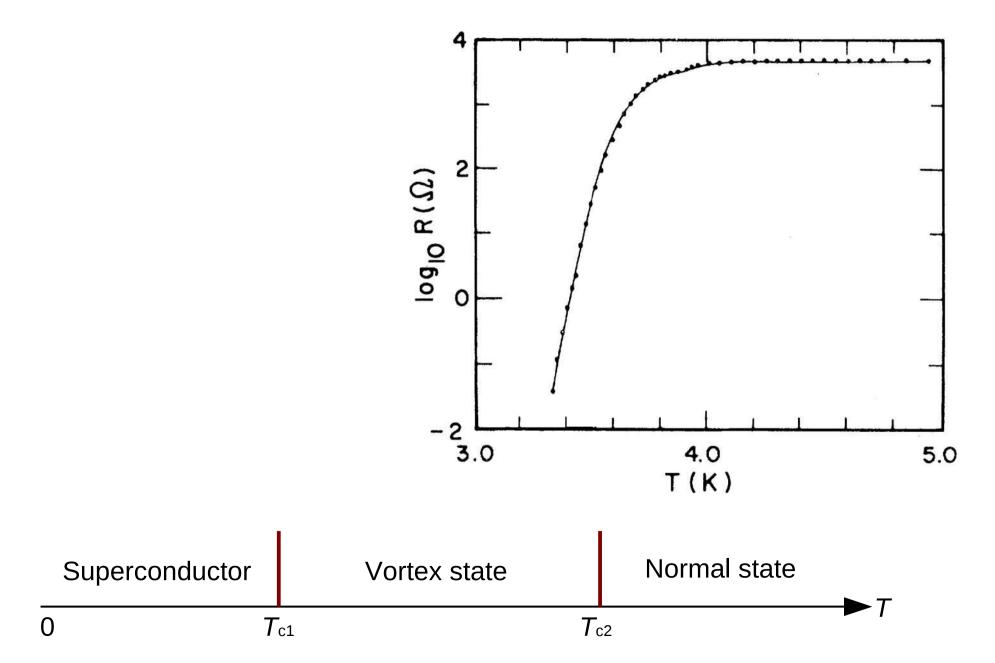




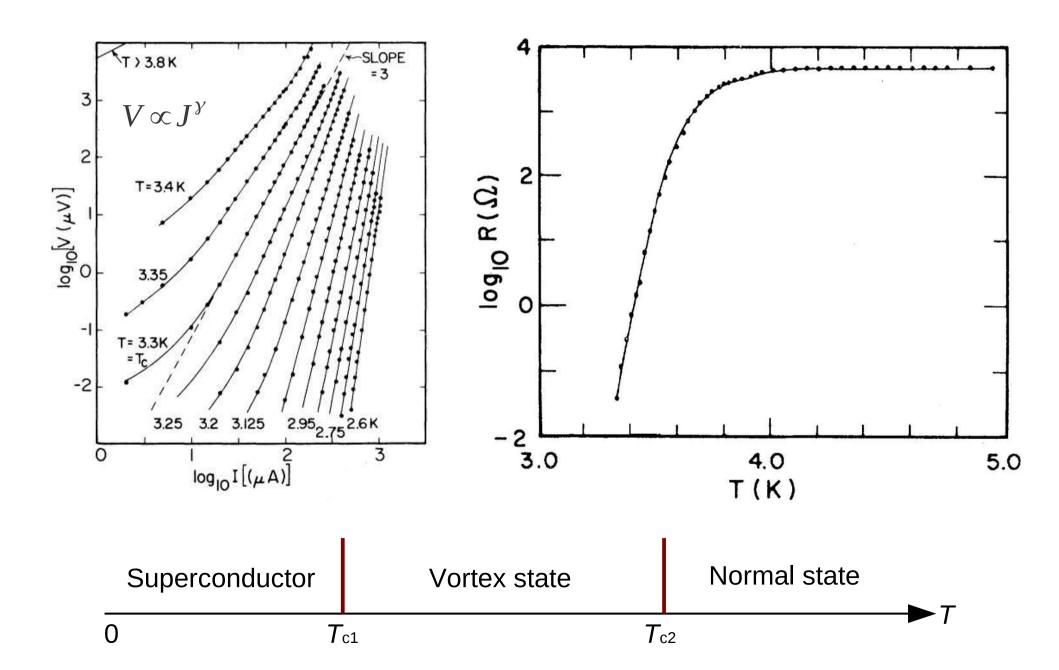




KT transition conductivity

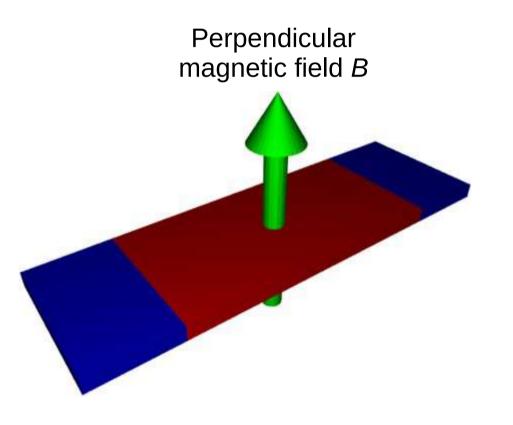


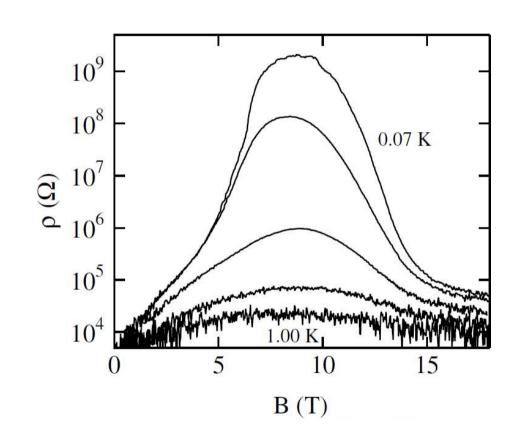
KT transition conductivity



Transition in disordered systems

Magnetoresistance peak [Sambandamurthy 04]

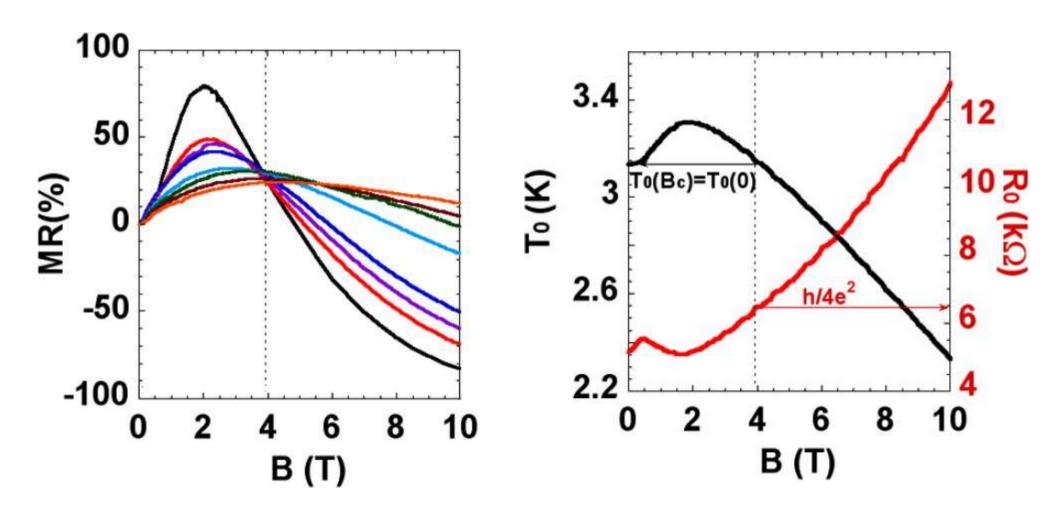




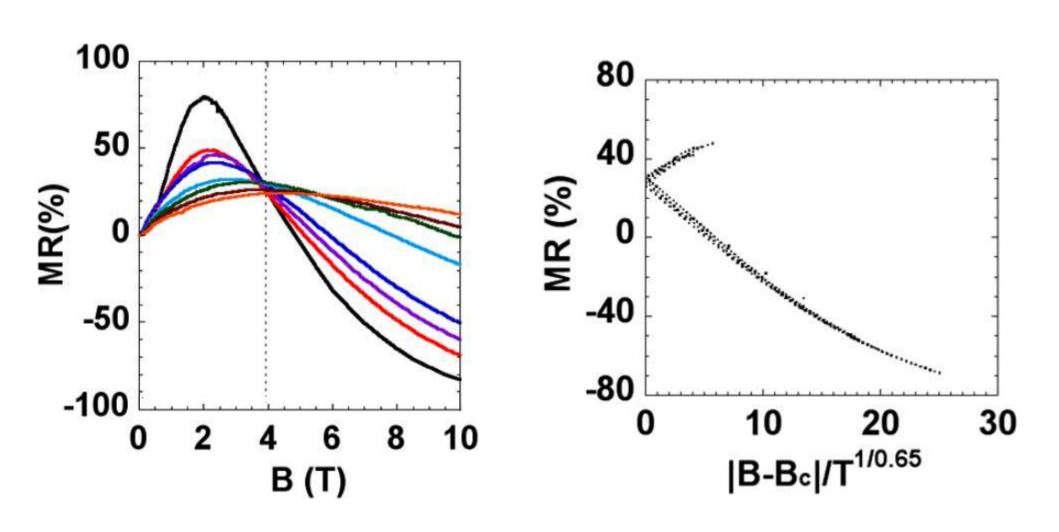
Transition in highly disordered systems

$$MR(B,T) = \frac{R(B,T) - R(0,T)}{R(0,T)}$$

[Lin & Goldman 11]



Transition in highly disordered systems



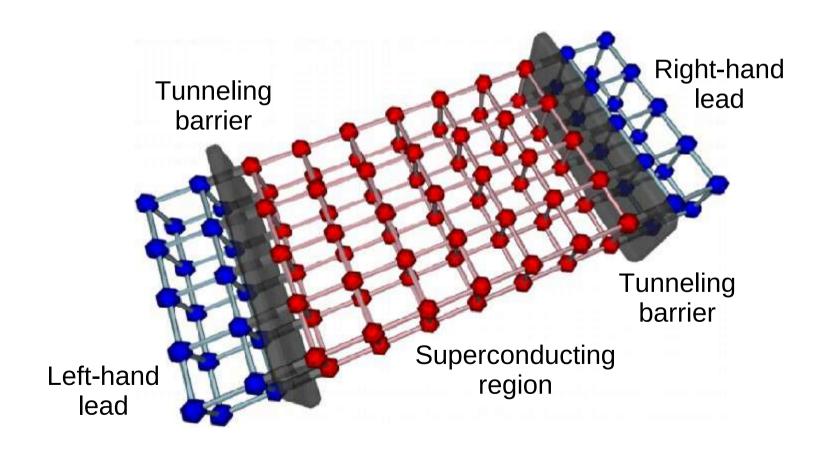
Strategy to study superconductors

- Develop new formalism to:
 - Calculate exact net current flow
 - Extract the microscopic current flow
 - Account for phase and amplitude fluctuations
 - Develop algorithm that permits access to large systems
- Test the formalism against a series of well-established results
- Study the magnetoresistance in thin-film superconductors

How to calculate the current

General expression for the current [Meir & Wingreen, PRL 1992]

$$J = \frac{\mathrm{i}e}{2h} \int \mathrm{d}\epsilon \left[\mathrm{Tr} \left\{ \left(f_{\mathrm{L}}(\epsilon) \Gamma^{\mathrm{L}} - f_{\mathrm{R}}(\epsilon) \Gamma^{\mathrm{R}} \right) \left(G_{\mathrm{e}\sigma}^{\mathrm{r}} - G_{\mathrm{e}}^{\mathrm{a}\sigma} \right) \right\} + \mathrm{Tr} \left\{ (\Gamma^{\mathrm{L}} - \Gamma^{\mathrm{R}}) G_{\mathrm{e}\sigma}^{<} \right\} \right]$$



Decoupling the interactions

Negative U Hubbard model

$$\hat{H}_{\text{Hubbard}} = \sum_{i,\sigma} \epsilon_{i\sigma} c_{i\sigma}^{\dagger} c_{i\sigma} - \sum_{i} U_{i} c_{i\uparrow}^{\dagger} c_{i\downarrow}^{\dagger} c_{i\downarrow} c_{i\uparrow}$$
$$- \sum_{\langle i,j \rangle,\sigma} \left(t_{ij} c_{i\sigma}^{\dagger} c_{j\sigma} + t_{ij}^{*} c_{j\sigma}^{\dagger} c_{i\sigma} \right)$$

Decouple in density and Cooper pair channels

$$\rho_{i\sigma} = -|U_i|c_{i\sigma}^{\dagger}c_{i\sigma} \qquad \Delta_i = |U_i| c_{i\downarrow}c_{i\uparrow}$$

Hamiltonian now contains single-body operators

$$\hat{\mathcal{H}}_{BdG} = \sum_{i,\sigma} (\epsilon_i + \rho_i) c_{i\sigma}^{\dagger} c_{i\sigma} - \sum_{\langle i,j \rangle,\sigma} \left(t_{ij} c_{i\sigma}^{\dagger} c_{j\sigma} + t_{ij}^* c_{j\sigma}^{\dagger} c_{i\sigma} \right)$$

$$+ \sum_{i} \left(\Delta_i c_{i\uparrow}^{\dagger} c_{i\downarrow}^{\dagger} + \bar{\Delta}_i c_{i\downarrow} c_{i\uparrow} \right) + \sum_{i} \frac{|\Delta_i|^2 + \rho_i^2}{U_i}$$

Diagonalizing the Hamiltonian

Hamiltonian now contains single-body operators

$$\hat{\mathcal{H}}_{BdG} = \sum_{i,\sigma} (\epsilon_i + \rho_i) c_{i\sigma}^{\dagger} c_{i\sigma} - \sum_{\langle i,j \rangle,\sigma} \left(t_{ij} c_{i\sigma}^{\dagger} c_{j\sigma} + t_{ij}^* c_{j\sigma}^{\dagger} c_{i\sigma} \right) + \sum_{i} \left(\Delta_i c_{i\uparrow}^{\dagger} c_{i\downarrow}^{\dagger} + \bar{\Delta}_i c_{i\downarrow} c_{i\uparrow} \right) + \sum_{i} \frac{|\Delta_i|^2 + \rho_i^2}{U_i}$$

Energy eigenstates can be found from diagonalization of

$$\hat{\mathcal{H}}_{\text{BgG}} = \frac{|\Delta|^2 + \rho^2}{U} + \left(\begin{array}{cc} c_{\uparrow}^{\dagger} & c_{\downarrow} \end{array} \right) \left(\begin{array}{cc} \epsilon + \rho & \Delta \\ \bar{\Delta} & -(\epsilon + \rho) \end{array} \right) \left(\begin{array}{cc} c_{\uparrow} \\ c_{\downarrow}^{\dagger} \end{array} \right) + \epsilon + \rho$$

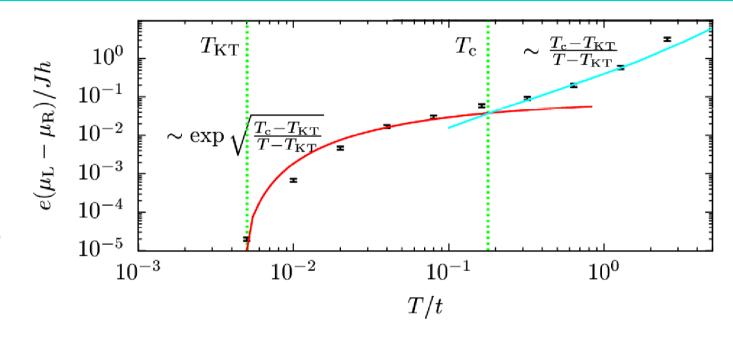
Accelerated Metropolis sampling

To perform thermal sum calculate

$$\langle J \rangle = \sum_{\Delta, \rho} J[\Delta, \rho] e^{-\beta(E[\Delta, \rho] - E_0)}$$

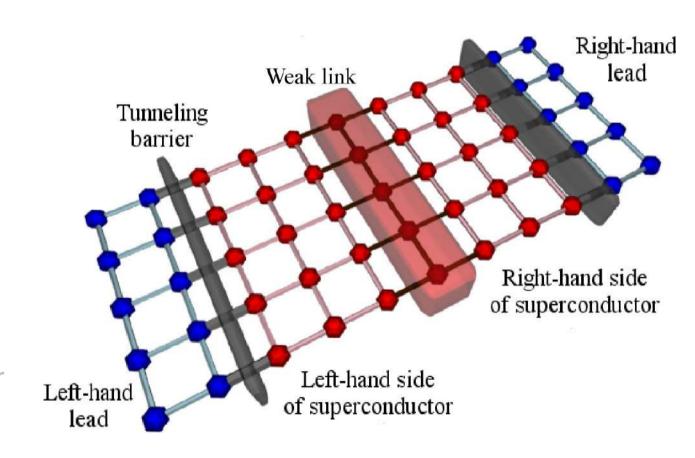
- Propose new configuration of Δ and ρ , accept with probability $\exp(\beta E[\Delta_{\rm old},\rho_{\rm old}] \beta E[\Delta_{\rm new},\rho_{\rm new}])$
- Calculating $E[\Delta, \rho]$ costs $O(N^3)$, where N is the number of sites
- New method calculates $E[\Delta,\rho]-E[\Delta+\delta\Delta,\rho+\delta\rho]$ using a Chebyshev expansion [Weisse 09] in $O(N^{1.56})$ time

- Resistivity at the Kosterlitz-Thouless transition
- Nonlinear IV characteristics
- Length dependence of conductivity
- Andreev reflection
- Josephson junction
- Little-Parks effect in large diameter cylinder

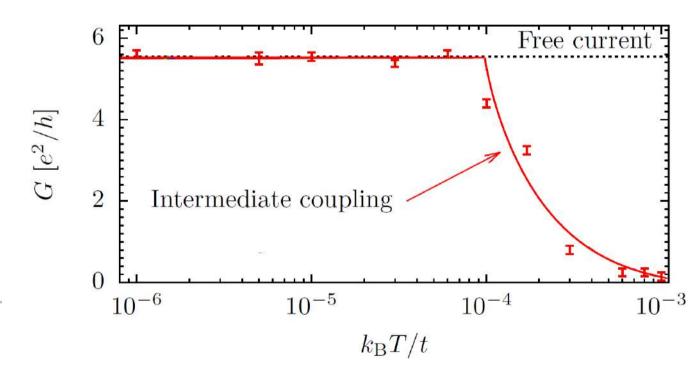


Halperin & Nelson, J. Low Temp. Phys 1979 Ambegaokar *et al.*, PRB 1980

- Resistivity at the Kosterlitz-Thouless transition
- Nonlinear IV characteristics
- Length dependence of conductivity
- Andreev reflection
- Josephson junction
- Little-Parks effect in large diameter cylinder



- Resistivity at the Kosterlitz-Thouless transition
- Nonlinear IV characteristics
- Length dependence of conductivity
- Andreev reflection
- Josephson junction
- Little-Parks effect in large diameter cylinder

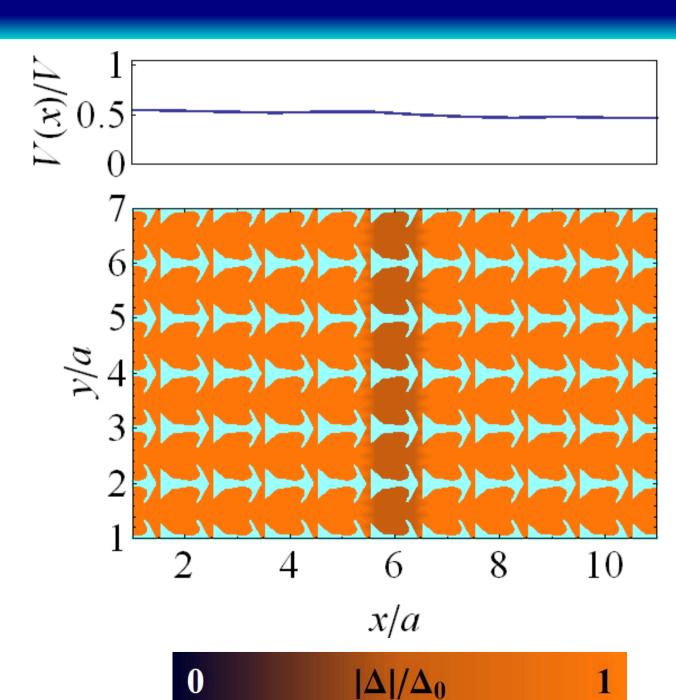


Ambegaokar & Baratoff, PRL 10, 486 (1963)

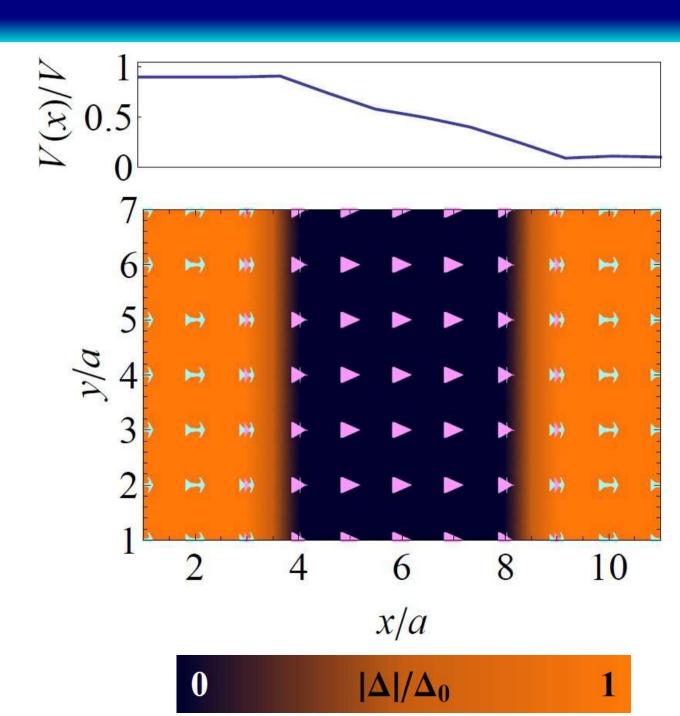
- Resistivity at the Kosterlitz-Thouless transition
- Nonlinear IV characteristics
- Length dependence of conductivity
- Andreev reflection
- Josephson junction
- Little-Parks effect in large diameter cylinder



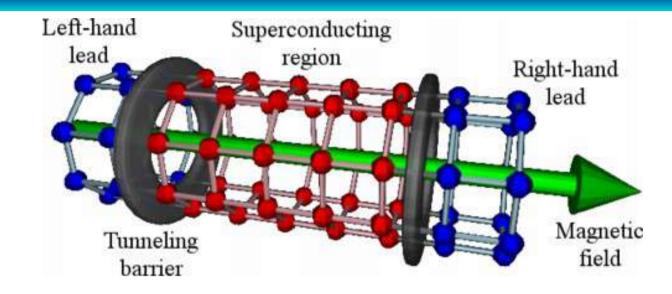
- Resistivity at the Kosterlitz-Thouless transition
- Nonlinear IV characteristics
- Length dependence of conductivity
- Andreev reflection
- Josephson junction
- Little-Parks effect in large diameter cylinder

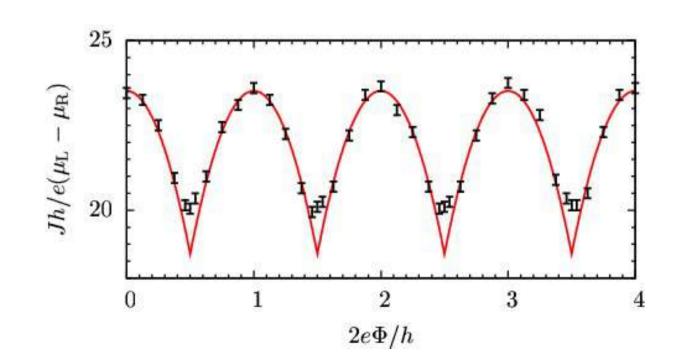


- Resistivity at the Kosterlitz-Thouless transition
- Nonlinear IV characteristics
- Length dependence of conductivity
- Andreev reflection
- Josephson junction
- Little-Parks effect in large diameter cylinder



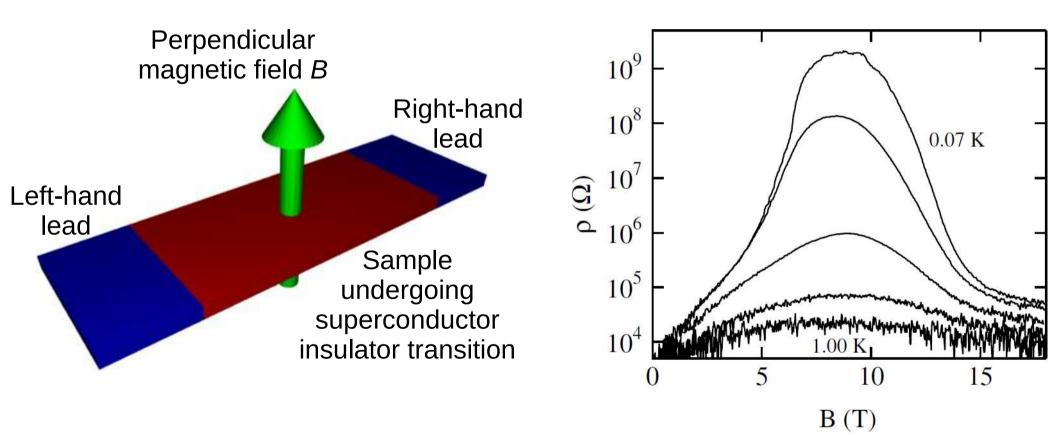
- Resistivity at the Kosterlitz-Thouless transition
- Nonlinear IV characteristics
- Length dependence of conductivity
- Andreev reflection
- Josephson junction
- Little-Parks effect in large diameter cylinder





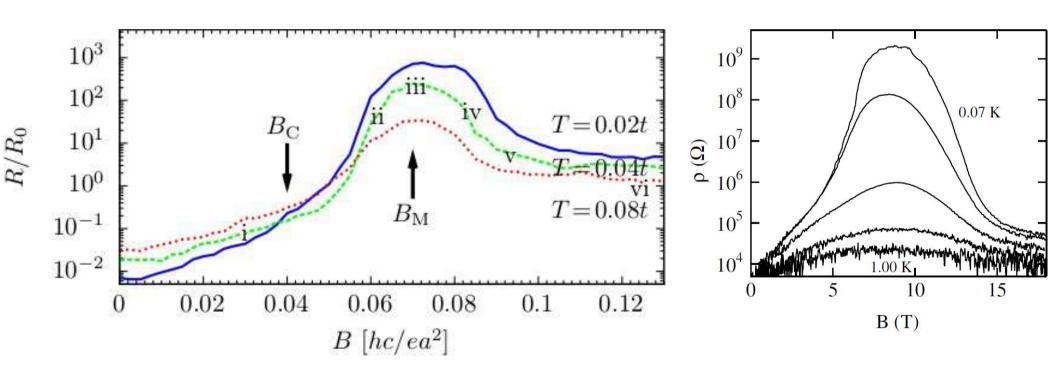
Magnetoresistance peak

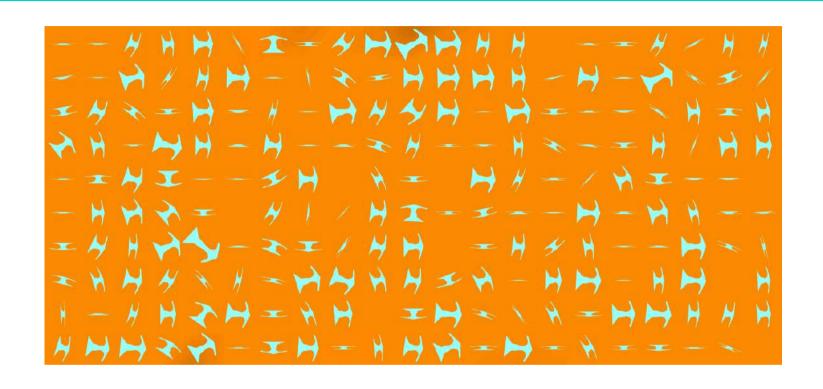
 Study superconductor-insulator transition in dirty sample with perpendicular magnetic field

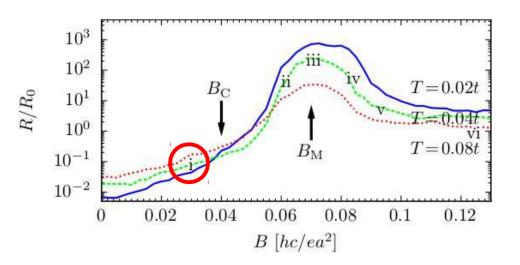


Magnetoresistance peak

 Study superconductor-insulator transition in dirty sample with perpendicular magnetic field

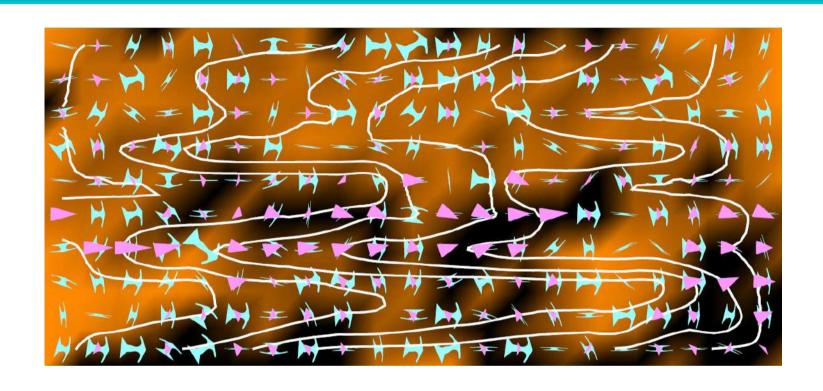


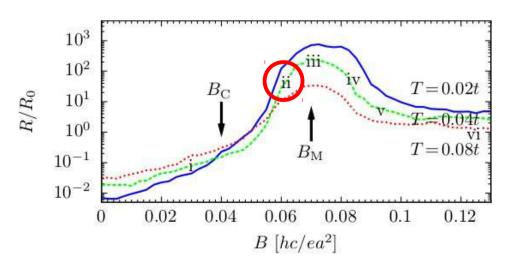




Superconducting current

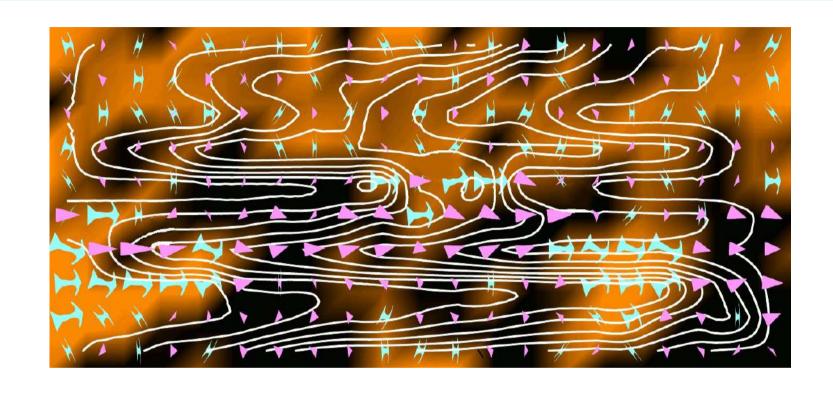
Normal current

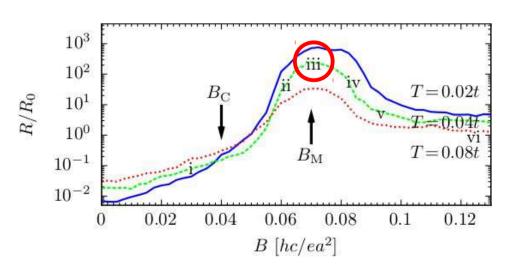


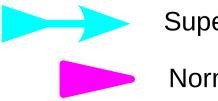


Superconducting current

Normal current

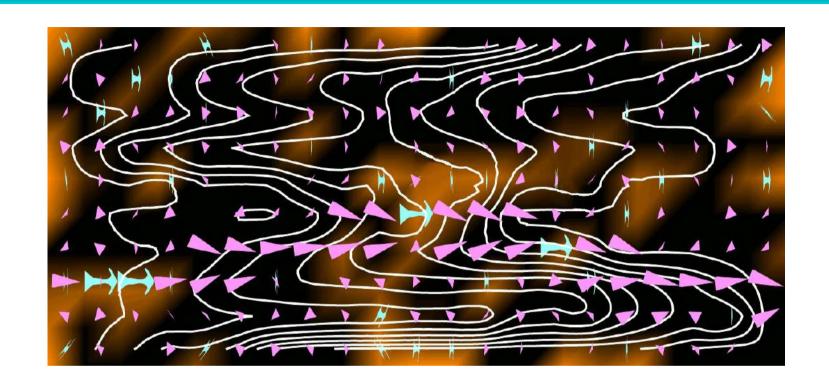


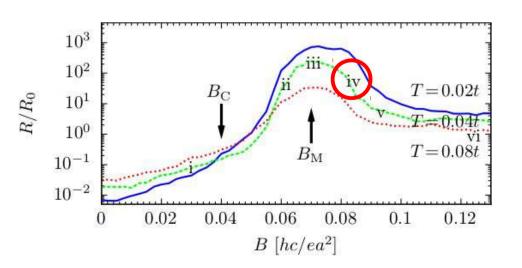


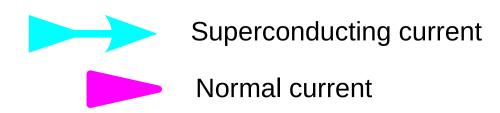


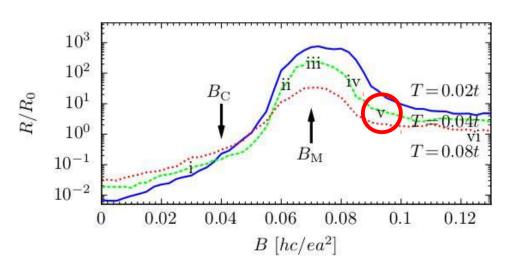
Superconducting current

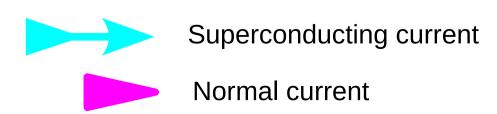
Normal current

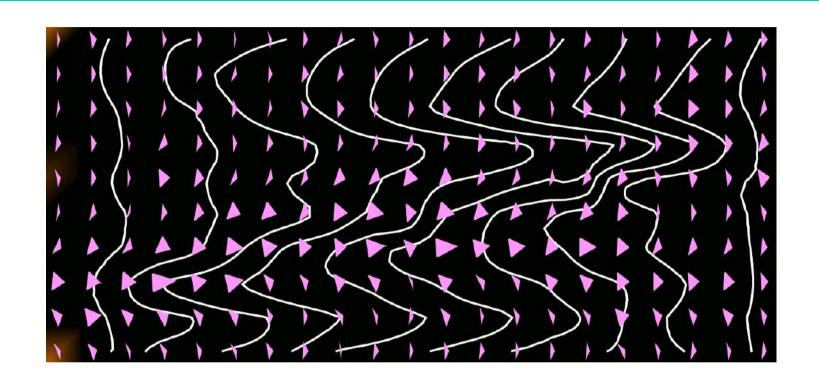


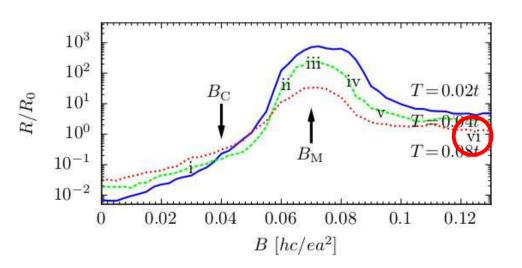


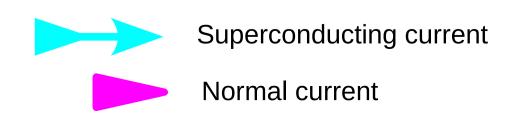






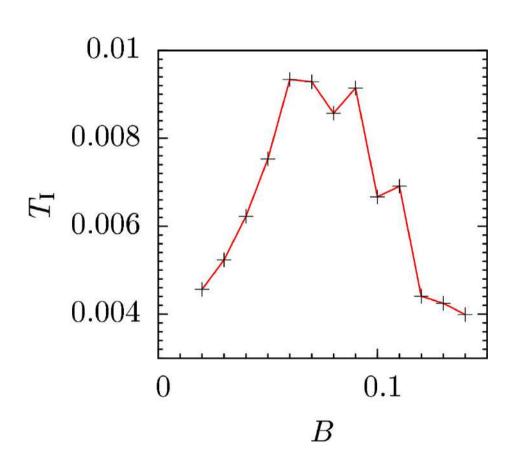


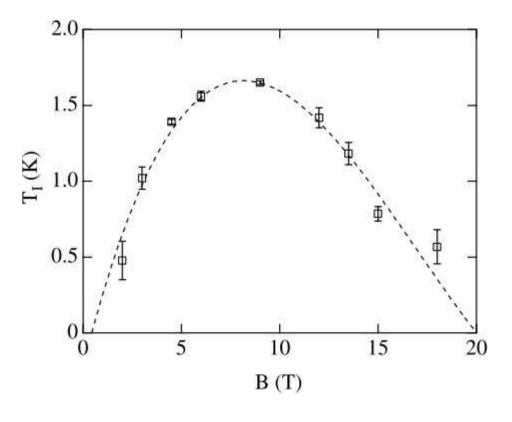




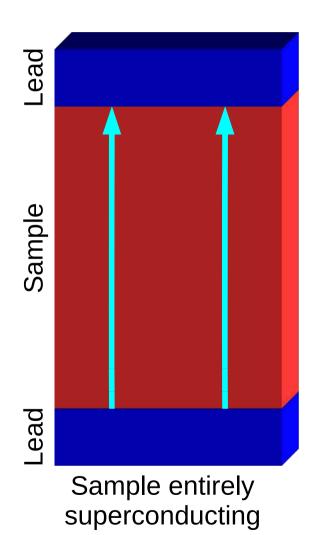
Clues: activated transport

• Activated transport $\rho = \rho_0 e^{T_1/T}$

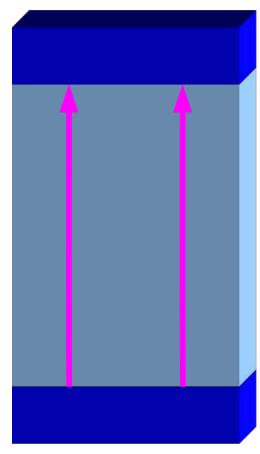




Proposed mechanism

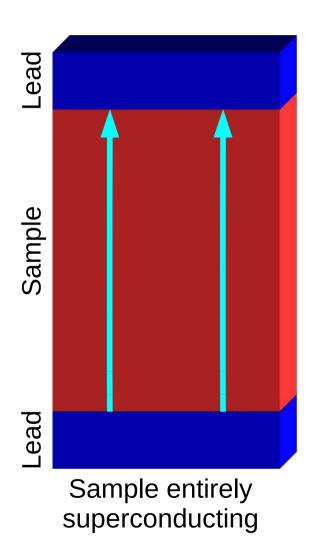


Superconducting puddles have a charging energy and a tunneling barrier

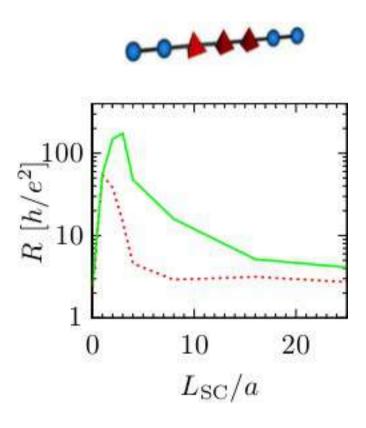


Sample entirely normal

Proposed mechanism



Superconducting puddles have a charging energy and a tunneling barrier

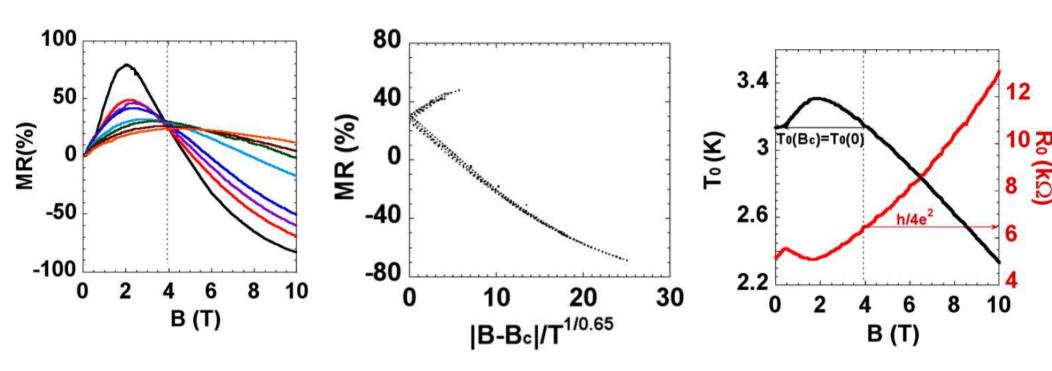


Highly disordered systems

$$MR(B,T) = \frac{R(B,T) - R(0,T)}{R(0,T)}$$

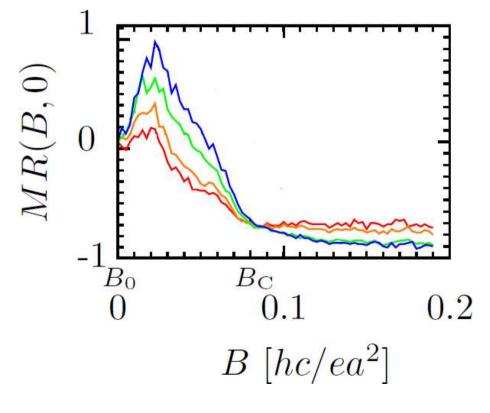
$$R(B,T) = R_0(B) e^{T_A/T}$$

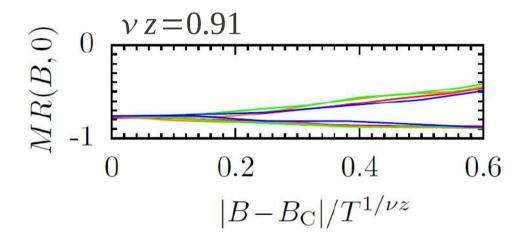
 $T_A(0) = T_A(B_C)$



Highly disordered films

$$MR(B,T) = \frac{R(B,T) - R(0,T)}{R(0,T)}$$



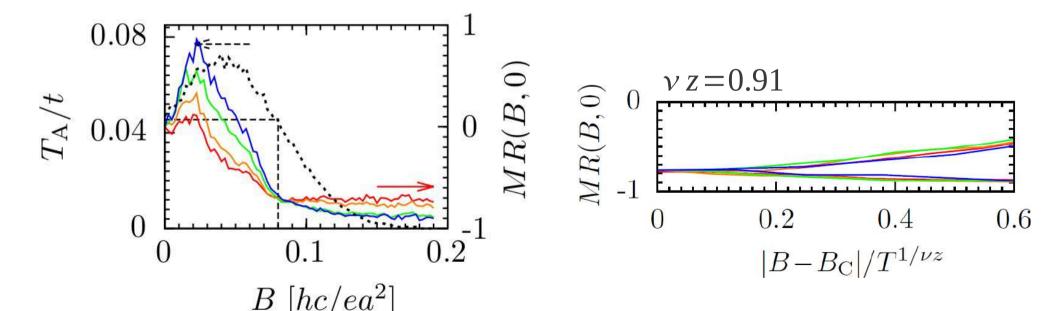


Highly disordered films

$$MR(B,T) = \frac{R(B,T) - R(0,T)}{R(0,T)}$$

$$R(B,T) = R_0(B) e^{T_A/T}$$
$$T_A(0) = T_A(B_C)$$

$$MR(B,T) = \frac{R_0(B)}{R_0(0)} \left(1 + \frac{T'_A(B_C)(B - B_C)}{T} \right) - 1$$

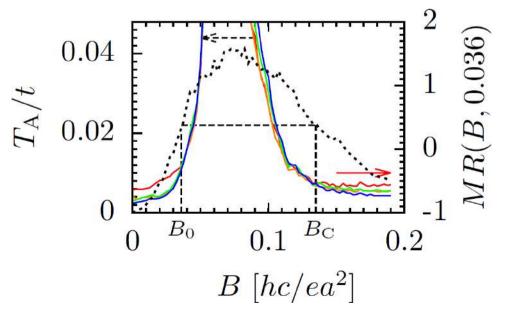


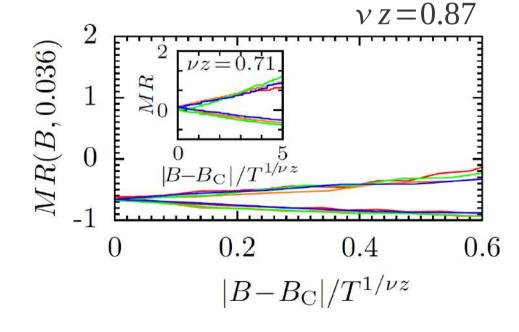
Highly disordered films

$$MR(B,T) = \frac{R(B,T) - R(B_0,T)}{R(B_0,T)}$$

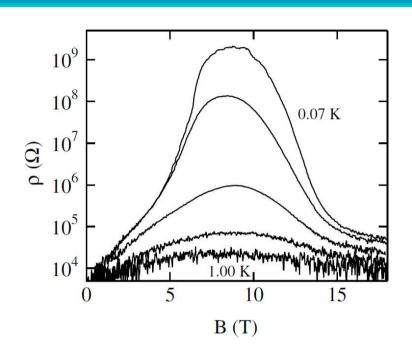
$$R_0(B) \mid T'_{\Lambda}(B_0)(B_0)$$

$$MR(B,T) = \frac{R_0(B)}{R_0(B_0)} \left(1 + \frac{T'_{\rm A}(B_{\rm C})(B - B_{\rm C})}{T} \right) - 1$$

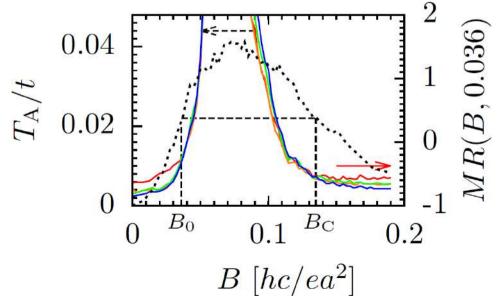


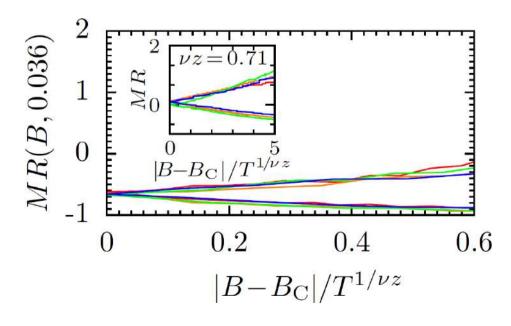


Highly disordered films



[Sambandamurthy 04]

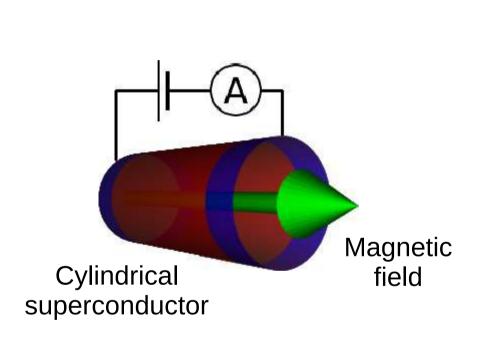


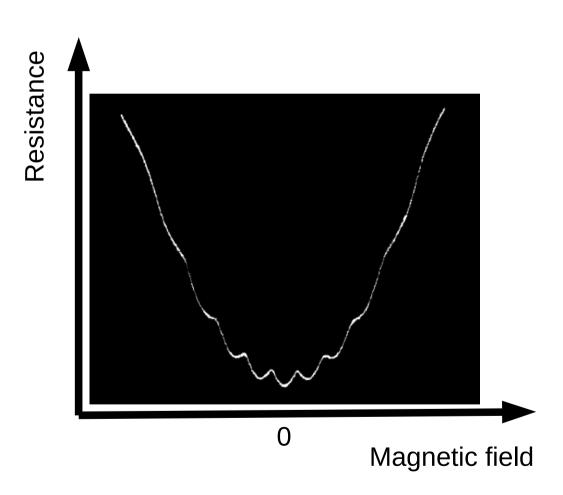


Summary & future prospects

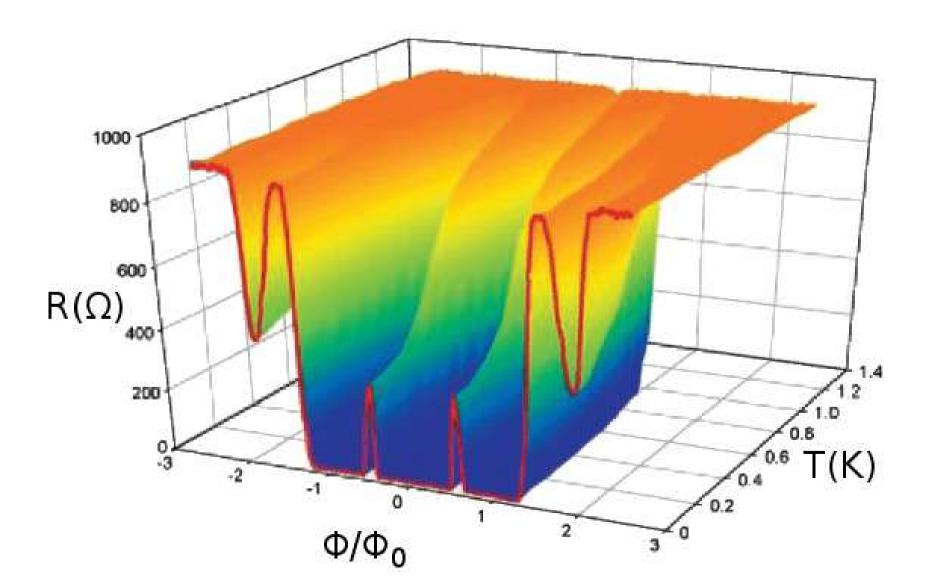
- Developed new formalism that includes thermal phase fluctuations to calculate and probe transport in superconductors
- Magnetoresistance peak could be driven by activated transport through superconducting islands
- Universal scaling of MR curves could be consequence of activated transport
- Superconductor-insulator transition in small diameter cylinders is driven by phase fluctuations
- Flexibility allows us to study wide range of unexplained effects

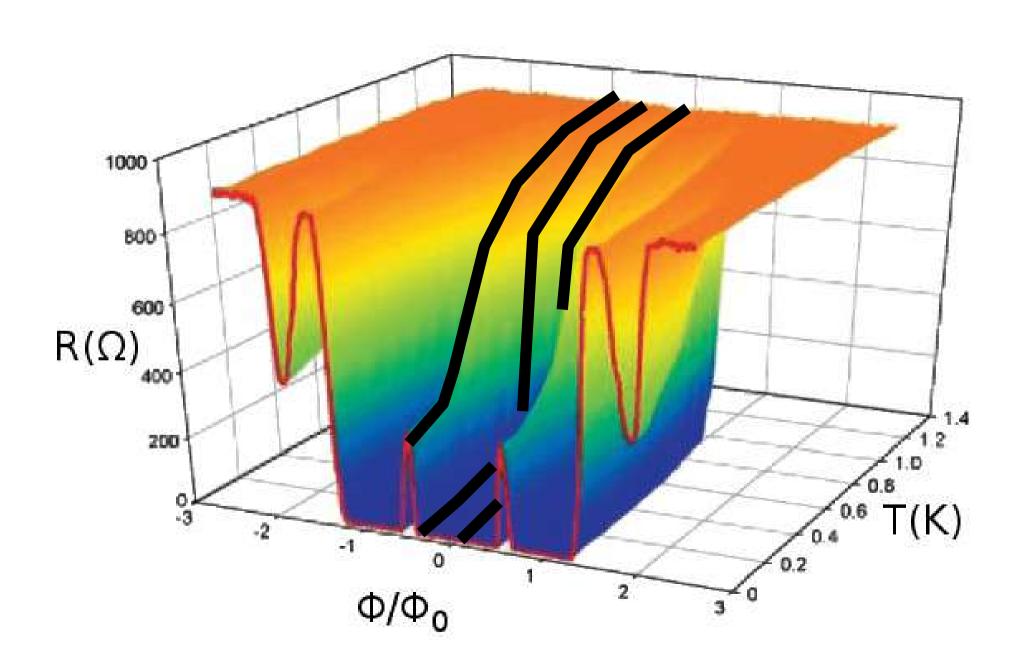
 Cylindrical superconductor held at transition temperature and zero threading flux [Little & Parks, PRL 1962]





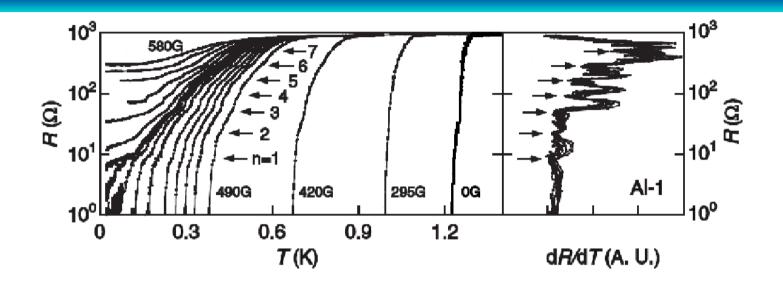
• Reduce cylinder diameter to superconducting correlation length [Liu *et al.*, Science 2001; Wang *et al.*, PRL 2005]

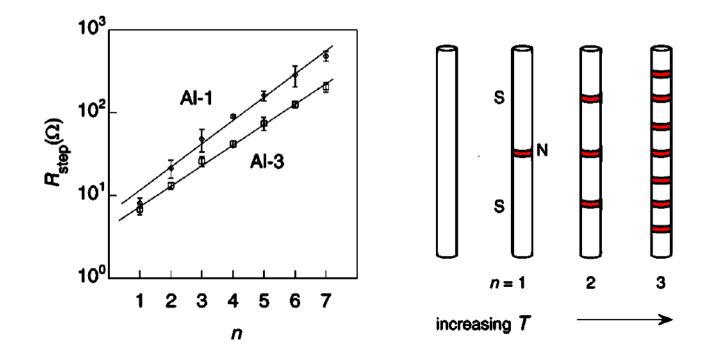




Wang et al. PRL (2005)

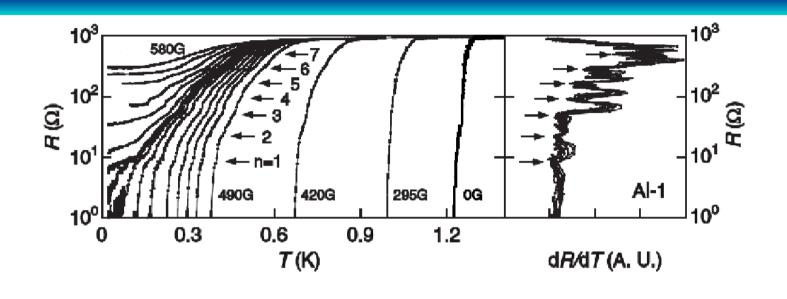
Quantum phase transition hypothesis

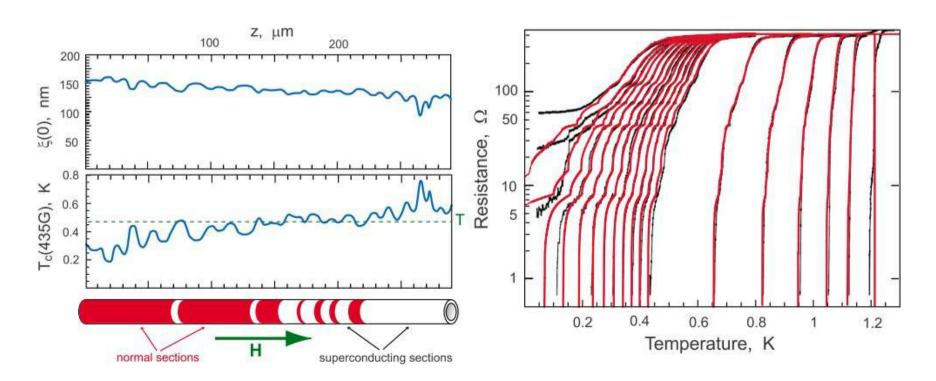


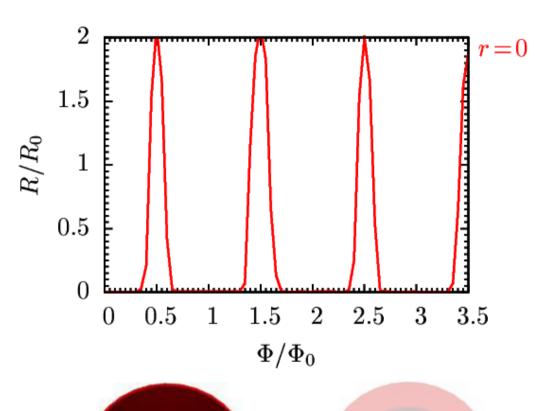


Dao & Chibotaru, PRB (2009)

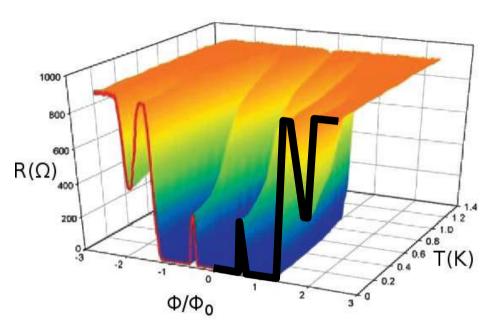
Mean-field BCS transition hypothesis



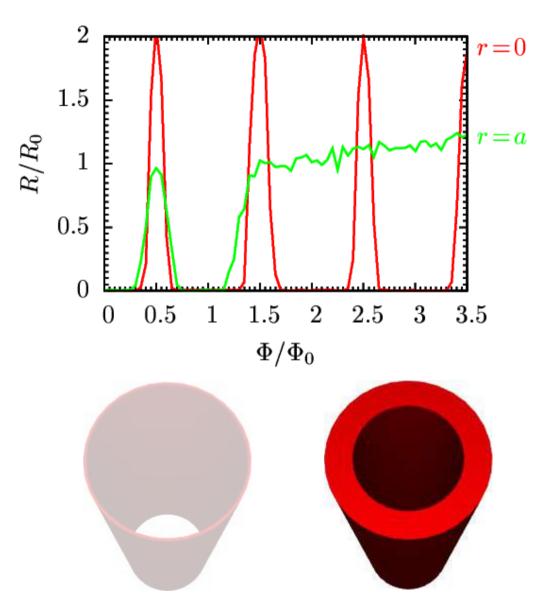




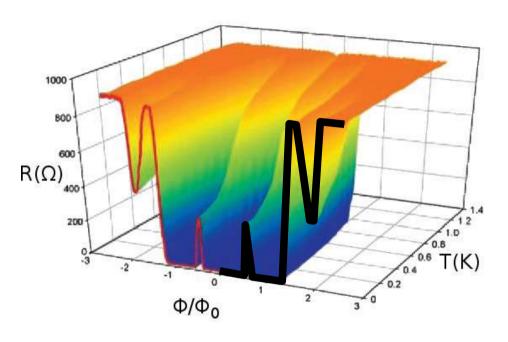
Experiment:

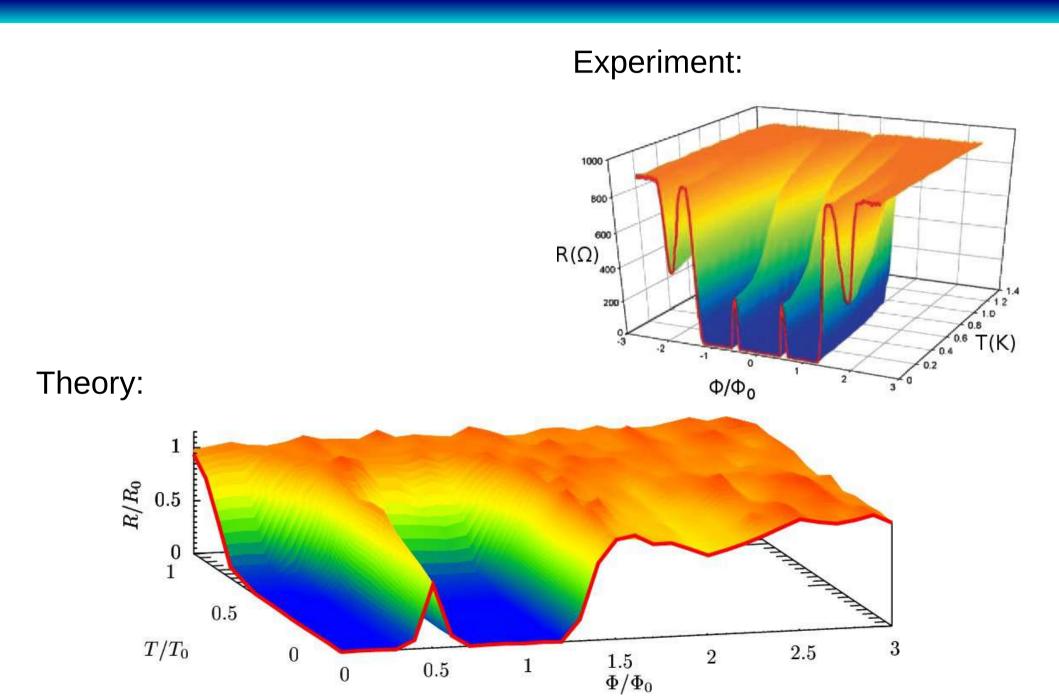


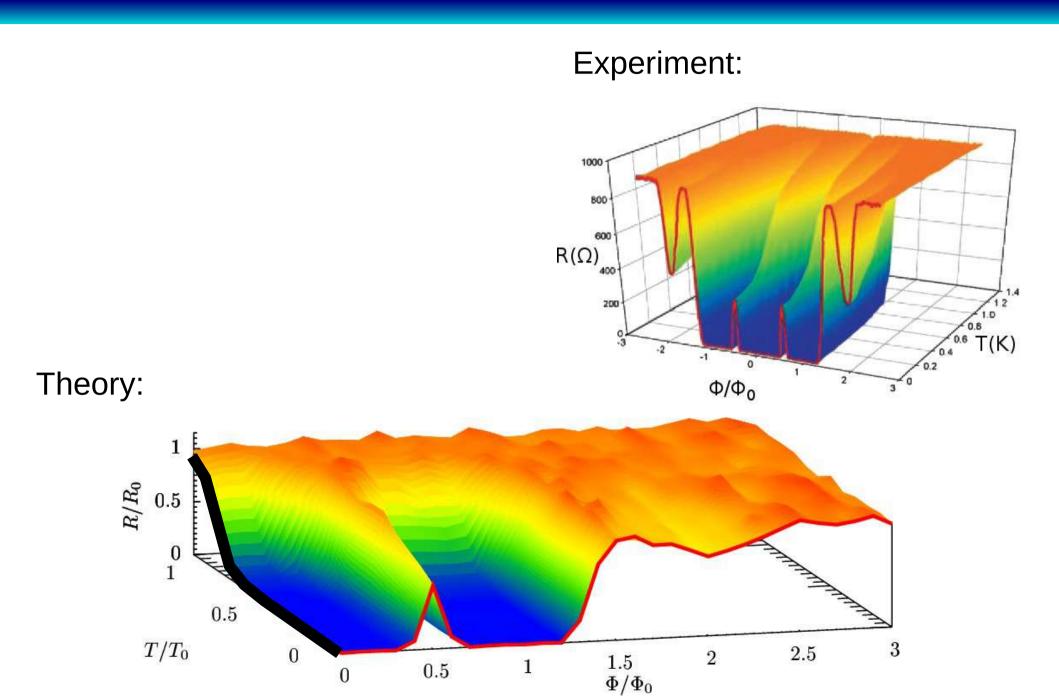
Theory:



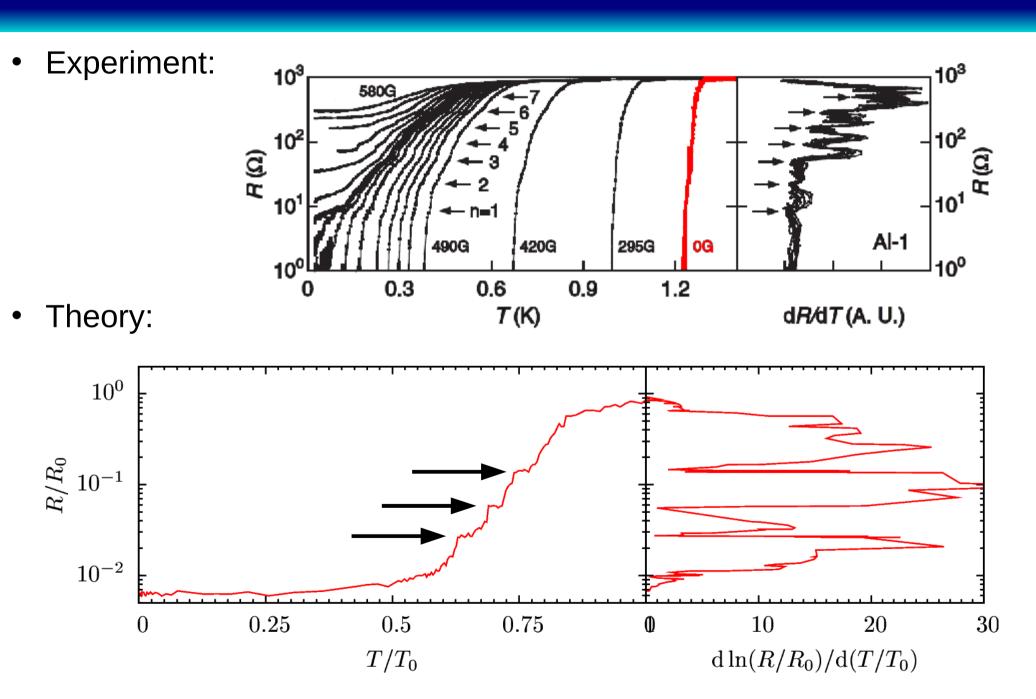
Experiment:



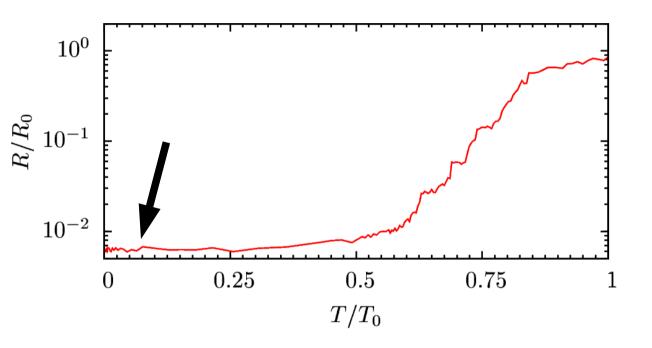


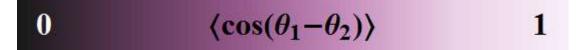


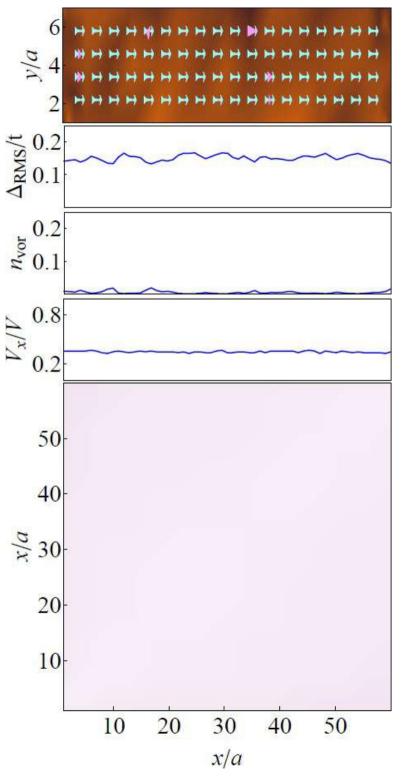
Evidence of phase reconstruction



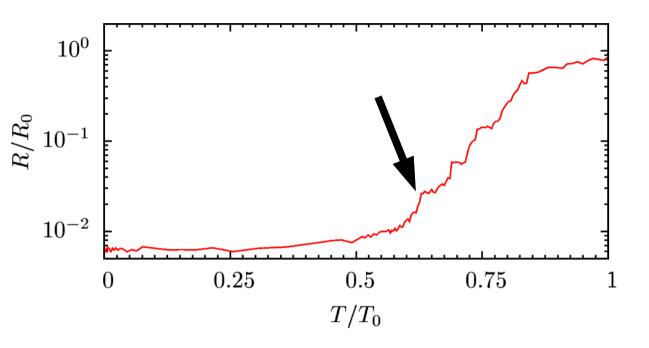
Completely superconducting

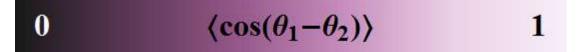


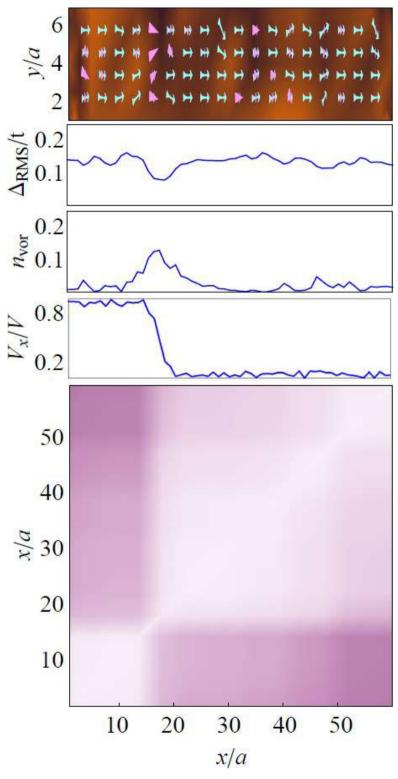




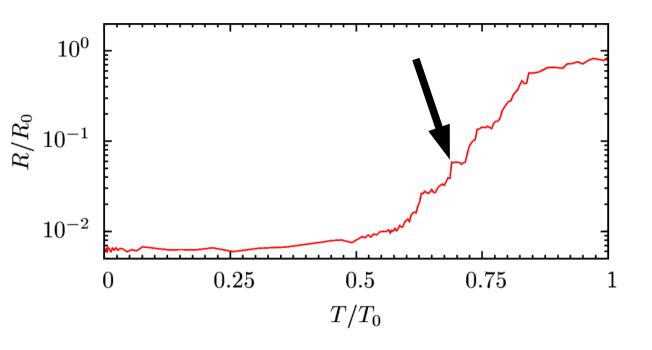
Two superconducting regions

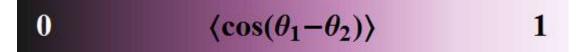


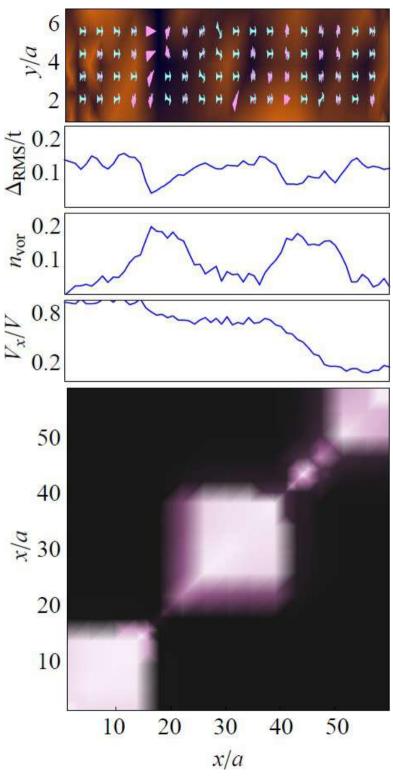




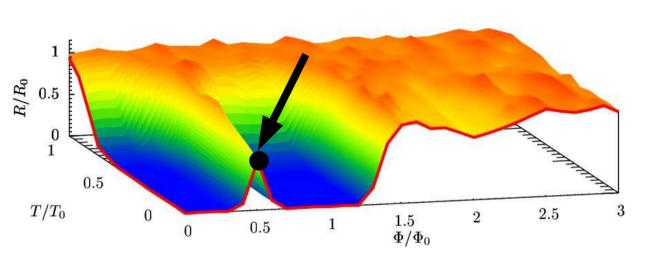
Three superconducting regions





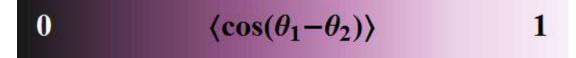


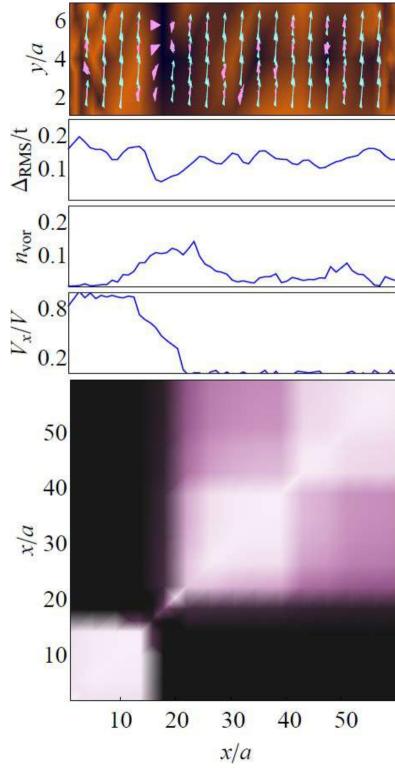
Half flux quantum normal state



Superconducting current

Normal current





Summary & future prospects

- Developed new formalism that includes thermal phase fluctuations to calculate and probe transport in superconductors
- Magnetoresistance peak could be driven by activated transport through superconducting islands
- Universal scaling of MR curves could be consequence of activated transport
- Superconductor-insulator transition in small diameter cylinders is driven by phase fluctuations
- Flexibility allows us to study wide range of unexplained effects