intellegens

DATA - DRIVEN DISCOVERY

7 examples of how materials & chemicals companies innovate using Alchemite machine learning

- 1. Alloys in aerospace
- 2. Batteries
- 3. Antimalarial drug discovery
- 4. 3D printing
- **5**. Data validation
- 6. Forging hammers
- 7. Alkanes for lubricants

Alloys in aerospace

Alloys must have good performance at high temperatures

Commercial superalloys do not have the **optimal balance of properties**

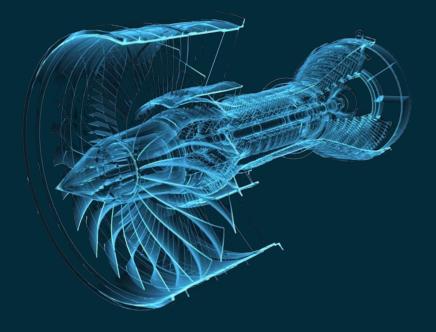
Long and iterative research and development process is expensive

Solution

Machine learning tool Alchemite

Augment experimental data with thermodynamic predictions

Incorporate **uncertainty** to design alloys with the highest likelihood to **meet design targets**



Outcome

New nickel-base superalloy that met **11** targets

Properties were experimentally verified

Reduced development **cost** by £10m

Batteries

Performance, cost, and safety of batteries will drive the development of **electric vehicles**

Materials and **battery management** system can both be improved by machine learning

Further research into battery chemistries requires more complicated battery dynamics

Solution

Machine learning to design the cathode, anode, and electrolyte

Predictive models for **battery management** systems to alleviate range anxiety

Outcome

Ran virtual experiments to **focus the search** for new materials

Reduced development and fabrication **costs** while improving key battery metrics

Predict remaining useful life, state of health, and state of charge

Antimalarial drug discovery

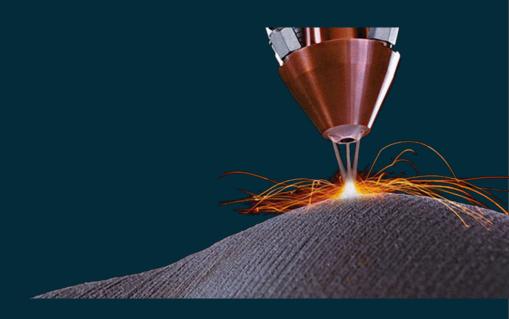
Challenge

Identify a new molecule against a novel **antimalarial** mechanism of action

Available data covers multiple assays, but only a **small fraction** have been measured

In blind test Alchemite **accurately predicted** activity of compounds against novel mechanisms of action


Outperforms conventional QSAR and other machine learning models


Outcome

Alchemite confidently predicted a compound generated automatically by Optibrium's StarDrop[™] software

Compound synthesised and tested by OSM group, only entry that demonstrated **potency against the target**

R

Challenge

Additive manufacturing is a **new process** that requires **new materials**

Ability to print materials is **poorly understood**

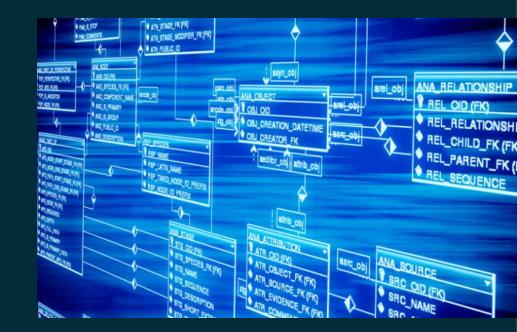
Direct laser deposition (a 3D printing method) has only been applied to **ten** nickel alloys

Solution

Alchemite exploited **property-property** relationships to capture of new insights

Juxtaposed historical **welding** and sparse **direct laser deposition** data

Optimized alloy for direct laser deposition and also fulfil other target properties



Alloy for direct laser deposition **experimentally verified** <u>Alchemite **saved 15 years** worth of development</u>

Data validation

Challenge

Companies that sell curated databases must have efficiently **identified** and **fixed** all erroneous entries

Errors in central database misguides research programs and will lead to **inaccurate** machine learning

Triage data introduced to a central database

Solution

Alchemite models all available data

Automatically identifies **unexpected** values to **focus attention** where additional investigation is most effective

Outcome

Identified errors including typos, errors, or genuine outliers

Automate tool to **triage** submitted data

intellegens Alchemite ^{ns} Analytics 🛛 Create model 🕕 demo 🗸														
мо	example_steels 205 rows 12 cols	Data Explorer		SHOW PREDICTIONS		C HIDE OUTLIERS								
		0	С	Mn	Si	Cr	Ni	Мо	v	Co	Heat treatment/C	YS/MPa	UTS/MPa	Elong/%
⊞	Data Explorer	∴⊙	0.02	0.1	2.02	0.01	18.4	0.02	0.01	0.01	816	1461	1502	
 ⊙	Analytics Predict Optimize	∴⊙	0.02	0.1	2.02	0.01	18.4	0.02	0.01	0.01	816	1137	1185	
		••⊙	0.02	0.11	3.18	0.01	18.3	0.02	0.01	0.01	816	1461	1502	
		••⊙	0.02	0.11	3.18	0.01	18.3	0.02	0.01	0.01	816	1378	1461	
		••⊙	0.35	0.07	4.75	0.01	18.5	0.02	0.01	0.01	816	1495	1826	
		••⊙	0.35	0.07	4.75	0.01	18.5	0.02	0.01	0.01	816		2074	
	Metadata	•• ⊙	0.01	2.5	0.02	0.01	18	0.02	0.01	0.01	816	1461	1502	
		••⊙	0.01	2.5	0.02	0.01	18	0.02	0.01	0.01	816	1481	1543	
		•.⊙	0.02	0.01	1.93	13.9	6	0.02	0.01	6	1038		1213	
		••⊙	0.02	0.01	1.82	13.9	5.1	0.02	0.01	8.9	1038			17
		•.⊙	0.02	0.01	1.86	15.9	4	0.02	0.01	9.2	1038			17
		••⊙	0.01	0.01	1.72	15.7	4.1	0.02	0.01	7.4	1038			16
		∴⊙	0.01	0.01	1.99	17.5	2.1	0.02	0.01	11.8	1038			10
		••⊙	0.16	0.16	0.05	1.97	10.05	1	0.01	13.88	899			12
		•.⊙	0.16	0.06	0.04	1.95	10.15	0.98	0.01	13.8	899			16
		∴⊙	0.16	0.06	0.04	1.95	10.15	0.98	0.01	13.8	816			13.3
		∴⊙	0.17	0.16	0.05	2.97	10.02	1.21	0.01	13.74	816			15.5
		∴⊙	0.16	0.06	0.04	1.95	10.15	0.98	0.01	13.8	899			15.4
		∴⊙	0.16	0.16	0.05	1.97	10.05	1	0.01	13.88	899			15.5
		∴⊙	0.17	0.16	0.05	2.97	10.02	1.21	0.01	13.74	816			16
)∴⊙	0.12	0.18	0.06	2.01	10.07	1	0.01	12.1	816	1452	1503	16.5
Pov	vered by Alchemite API v0.15.2	∴ ⊙	0.12	0.18	0.06	2.01	10.07	1	0.01	12.1	816	1415	1503	16.5

Forging hammers

Forging hammers wear and degrade through repeated use, can they be made more durable?

Machine learning explores **new alloys** to improve strength at elevated temperature

Solution

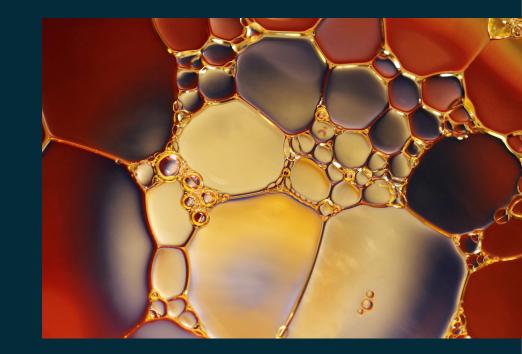
Augment experimental data with thermodynamic models

Incorporate **uncertainty** to propose molybdenum-base alloys with the highest likelihood to meet **design targets**

Alchemite suggests new precipitate chemistry with improved properties

•

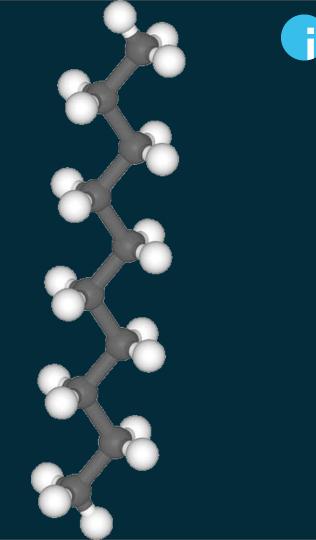
Outcome


New molybdenum-base alloys found with **5-fold** reduction in experimental time and cost

Improve molybdenum-base hammers lifetime by 30%, reducing deployment cost and factory downtime

Alkanes for lubricants

Challenge


Lubricants need to be optimized for new applications such as electric vehicles

Lubricants contain hydrocarbon molecules

Predicting the properties of hydrocarbons facilitates the development of base oils

Solution

Exploit **property-property** correlations augmented by computer simulations to predict physical properties

Outcome

Alchemite accelerated the identification of optimal hydrocarbons **tenfold**

Alchemite estimated intractable properties including shear viscosity five-times more accurately than other methods

Summary

Alchemite adds value to **sparse** data problems by exploiting **property-property** correlations

Juxtapose results from different methods

Significant saving in **reduced cost** and **accelerated** discovery

Website https://intellegens.ai

Articles https://intellegens.ai/article-type/whitepapers/

Resources https://intellegens.ai/resources/

Email info@intellegens.ai

@intellegensai /company/intellegensai

