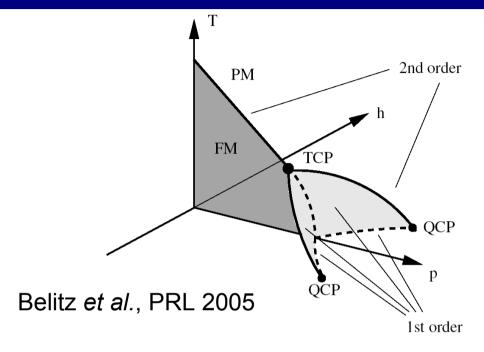
Inhomogeneous phase formation on the border of itinerant ferromagnetism



Gareth Conduit¹, Andrew Green², Ben Simons¹

1. University of Cambridge, 2. University of St Andrews

Itinerant ferromagnetism in an atomic Fermi gas: Influence of population imbalance G.J. Conduit & B.D. Simons, Phys. Rev. A **79**, 053606 (2009)

Inhomogeneous phase formation on the border of itinerant ferromagnetism G.J. Conduit, A.G. Green & B.D. Simons, arXiv:0906.1347

Two types of ferromagnetism

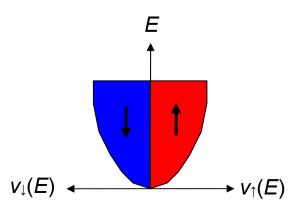
Localised ferromagnetism: moments confined in real space

Ferromagnet

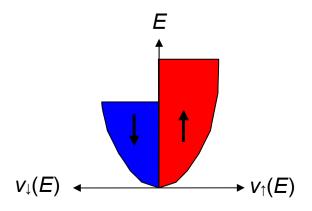
Antiferromagnet

• Itinerant ferromagnetism: electrons in Bloch wave states

Not magnetised



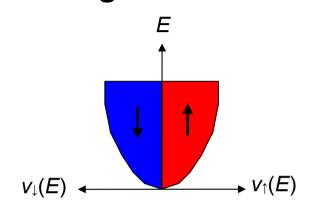
Partially magnetised



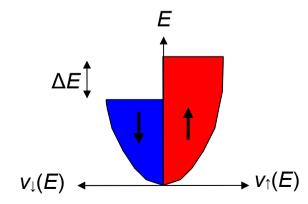
Stoner model for itinerant ferromagnetism

- Repulsive interaction energy *U*=*gn*↑*n*↓
- A ΔE shift in the Fermi surface causes:
 - (1) Kinetic energy increase of $\frac{1}{2}v\Delta E^2$
 - (2) Reduction of repulsion of $-\frac{1}{2}gv^2\Delta E^2$
- Total energy shift is $\frac{1}{2}v\Delta E^2(1-gv)$ so a ferromagnetic transition occurs if gv>1

Not magnetised



Partially magnetised



Ferromagnetism in iron and nickel

The Stoner model predicts a second order transition

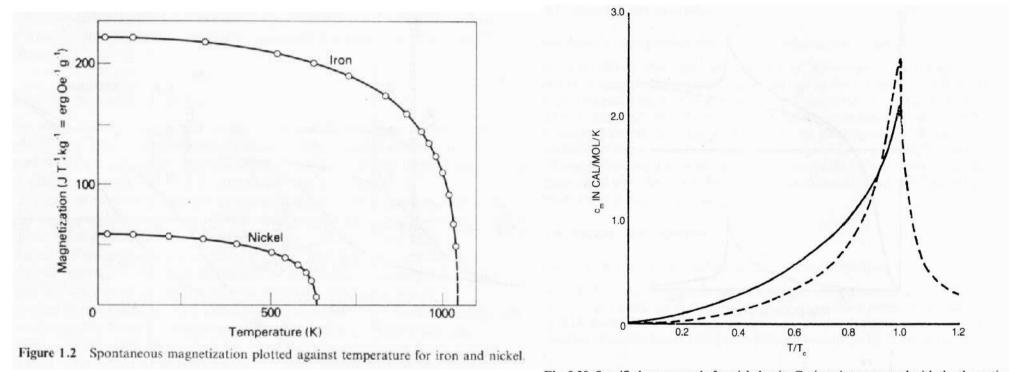
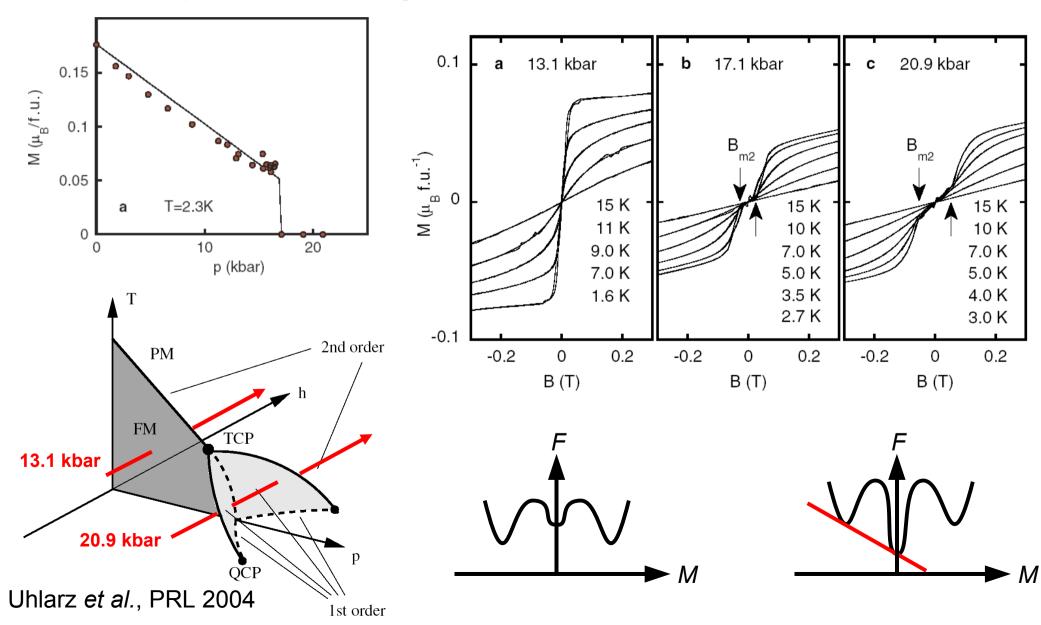


Fig. 9.20 Specific heat anomaly for nickel at its Curie point compared with the theoretical prediction.

that is characterised by a divergence of length-scales (peaked heat capacity and susceptibility)

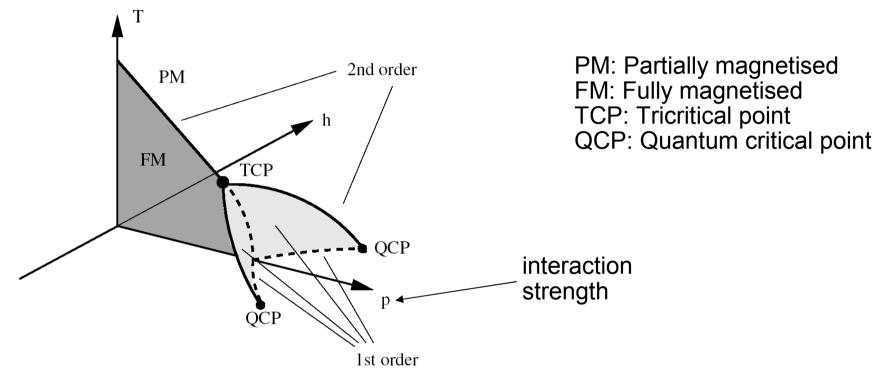
Breakdown of Stoner criterion — ZrZn₂

At low temperature and high pressure ZrZn₂ has a first order transition



Breakdown of Stoner criterion

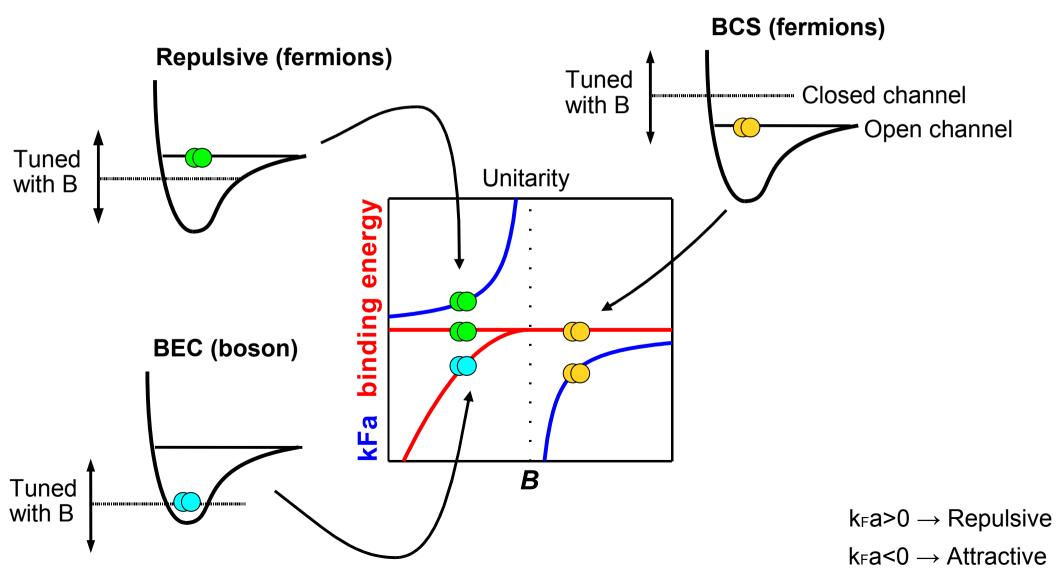
Generic phase diagram of the first order transition



- Two explanations of first order behaviour:
 - (1) Lattice-driven peak in the density of states (Pfleiderer *et al.* PRL 2002, Sandeman *et al.* PRL 2003)
 - (2) Transverse quantum fluctuations (Belitz et al. Z. Phys. B 1997)

Feshbach resonance

 Two-body contact collisions are controlled with a Feshbach resonance tuned by an external magnetic field



Outline of talk

Part I: Analyse uniform ferromagnetism for atomic gases

- Survey previous analytical work on itinerant ferromagnetism
- Demonstrate physical origin of first order transition
- Analyse population imbalance in cold atom gas
- Review ongoing cold atoms experiments

Part II: Search for inhomogeneous phase

- Survey experimental motivation
- Perform a gauge transformation to study putative textured phase
- Supplementary Quantum Monte Carlo calculations

Analytical method

• System free energy $F=-k_B T \ln Z$ is found via the partition function

$$Z = \int D \psi \exp \left(-\int \sum_{\sigma} \bar{\psi}_{\sigma} (-i \omega + \epsilon - \mu) \psi_{\sigma} - g \int \bar{\psi}_{\uparrow} \bar{\psi}_{\downarrow} \psi_{\downarrow} \psi_{\uparrow} \right)$$

Decouple using only the average magnetisation

$$m = \bar{\psi}_{\perp} \psi_{\uparrow} - \bar{\psi}_{\uparrow} \psi_{\downarrow}$$

gives

$$F \propto (1-g v) m^2$$

i.e. the Stoner criterion

Hertz-Millis (spin triplet channel) [Hertz PRB 1976 & Millis PRB 1993]

$$F = \frac{1}{2} \left(|\omega| / \Gamma_q + r + q^2 \right) m^2 + \frac{u}{4} m^4 + \frac{v}{6} m^6 - hm$$

Extension to Hertz-Millis

 Coupling to auxiliary fields can drive a transition first order [Rice 1954, Garland & Renard 1966]

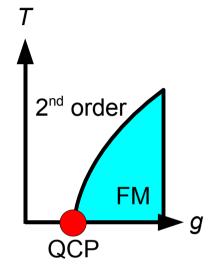
$$rm^{2}+um^{4}+a\phi^{2}\pm 2am^{2}\phi$$

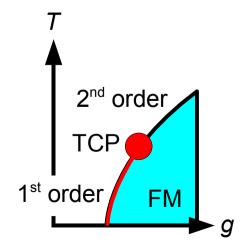
= $rm^{2}+(u-a)m^{4}+a(\phi\pm m^{2})^{2}$
= $rm^{2}+(u-a)m^{4}$

 Belitz-Kirkpatrick-Vojta (soft particle-hole & magnetisation) [Belitz et al. Z. Phys. B 1997]

$$F = \frac{1}{2} \left(|\omega| / \Gamma_q + r + q^2 \right) m^2 + \frac{u}{4} m^4 \ln(m^2 + T^2) + \dots - hm$$

• Chubukov-Pepin-Rech approach [Rech et al. 2006]





New approach to fluctuation corrections

$$Z = \int D \psi \exp \left(-\int \sum_{\sigma} \bar{\psi}_{\sigma} (-i \omega + \epsilon - \mu) \psi_{\sigma} - g \int \bar{\psi}_{\uparrow} \bar{\psi}_{\downarrow} \psi_{\downarrow} \psi_{\uparrow} \right)$$

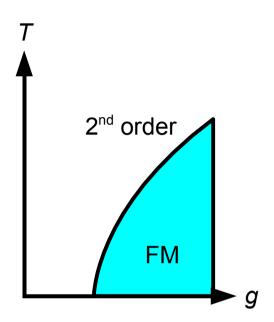
- Analytic strategy:
 - 1) Decouple in both the density and spin channels (previous approaches employ only spin)
 - 2) Integrate out electrons
 - 3) Expand about uniform magnetisation
 - 4) Expand density and magnetisation fluctuations to second order
 - 5) Integrate out density and magnetisation fluctuations

Particle-hole perspective

To first order in g the free energy is

$$F = \sum_{\sigma, k} \epsilon_{k}^{\sigma} n(\epsilon_{k}^{\sigma}) + gN^{\uparrow} N^{\downarrow} + \cdots$$

 To go beyond Stoner model need the next order in perturbation theory that will encompass fluctuation corrections



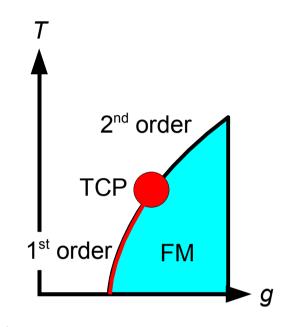
Particle-hole perspective

To second order in g the free energy is

$$F = \sum_{\sigma,k} \epsilon_{k}^{\sigma} n(\epsilon_{k}^{\sigma}) + gN^{\uparrow} N^{\downarrow}$$

$$-\frac{2g^{2}}{V^{3}} \sum_{p} \int \int \frac{\rho^{\uparrow}(p,\epsilon_{\uparrow})\rho^{\downarrow}(-p,\epsilon_{\downarrow})}{\epsilon_{\uparrow} + \epsilon_{\downarrow}} d\epsilon_{\uparrow} d\epsilon_{\downarrow}$$

$$+\frac{2g^{2}}{V^{3}} \sum_{\mathbf{k}_{1234}} \frac{n(\epsilon_{\mathbf{k}_{1}}^{\uparrow})n(\epsilon_{\mathbf{k}_{2}}^{\downarrow})}{\epsilon_{\mathbf{k}_{1}}^{\uparrow} + \epsilon_{\mathbf{k}_{2}}^{\downarrow} - \epsilon_{\mathbf{k}_{3}}^{\uparrow} - \epsilon_{\mathbf{k}_{4}}^{\downarrow}} \delta(\mathbf{k}_{1} + \mathbf{k}_{2} - \mathbf{k}_{3} - \mathbf{k}_{3})$$



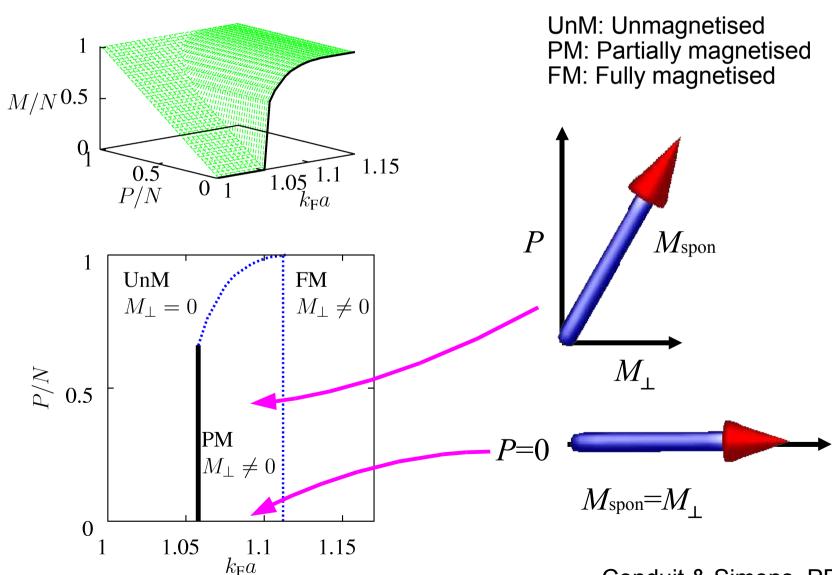
with $\epsilon_k^{\sigma} = \epsilon_k + \sigma gm$ and a particle-hole density of states

$$\rho^{\sigma}(\mathbf{p}, \epsilon) = \sum_{k} n(\epsilon_{k+p/2}^{\sigma}) \left[1 - n(\epsilon_{k-p/2}^{\sigma}) \right] \delta\left(\epsilon - \epsilon_{k+p/2}^{\sigma} + \epsilon_{k-p/2}^{\sigma}\right)$$

- Enhanced particle-hole phase space at zero magnetisation drives transition first order and tricritical point emerges
- Recover $m^4 \ln m^2$ at T=0
- Links quantum fluctuation to second order perturbation approach¹
 Abrikosov 1958 & Duine & MacDonald 2005

Population imbalanced case

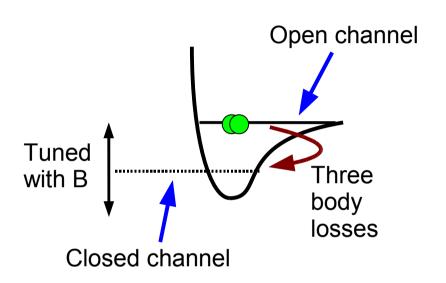
Phase diagram with population imbalance P in the canonical regime

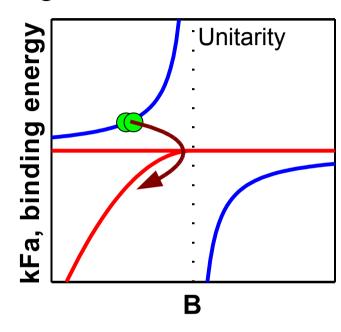


Conduit & Simons, PRB 2009

Experimental detection

Three body losses inhibit stability of ferromagnetic state

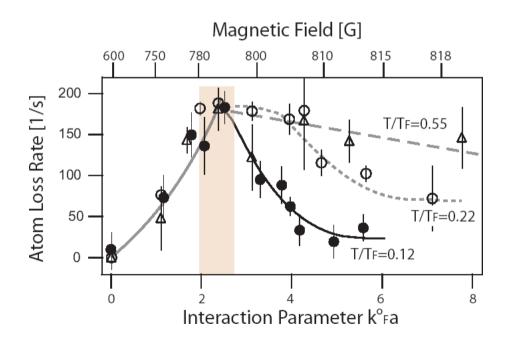




- Pauli exclusion prevents three-body losses in the ferromagnetic state
- Rather than disadvantage three-body losses can be a detection method of the absence of a ferromagnetic state, a⁶n_↑n_↓

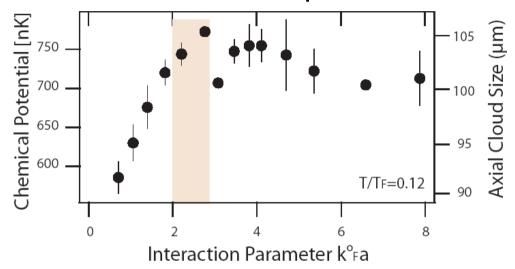
Experimental study with cold atom gases

- G.-B. Jo and W. Ketterle have recently observed itinerant ferromagnetism in cold atom gases¹
- Use ⁶Li atoms and short 2.5ms ramp time
- Atom loss rate $a^6n_1n_1$ is peaked at the transition

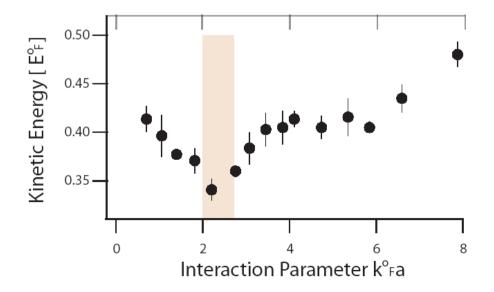


Experimental study with cold atom gases

Repulsive interactions increases the pressure, raising cloud size

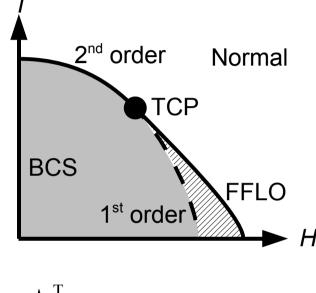


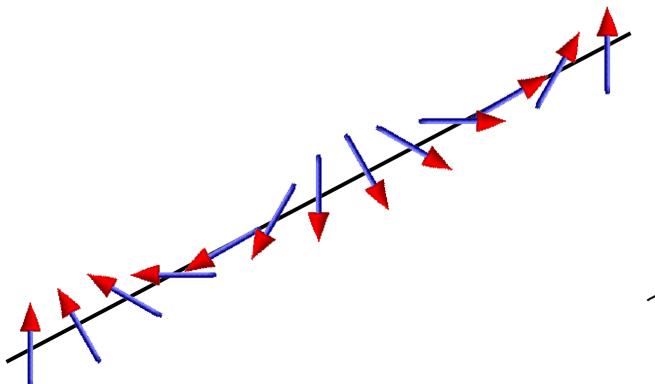
But reducing the kinetic energy ~n^{5/3} before the transition

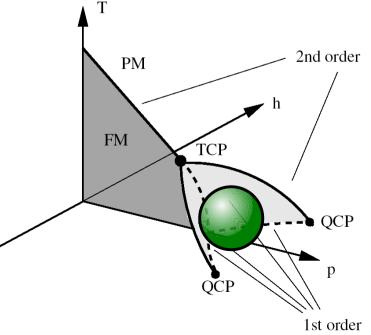


Summary of cold atoms work

- Revealed link between nonanalyticities and first order transition
- Motivated by Fulde-Ferrel-Larkin-Ovchinnikov (FFLO) and experiment now examine a putative textured ferromagnetic phase







Outline of textured ferromagnetism

Part I: Analyse uniform ferromagnetism for atomic gases

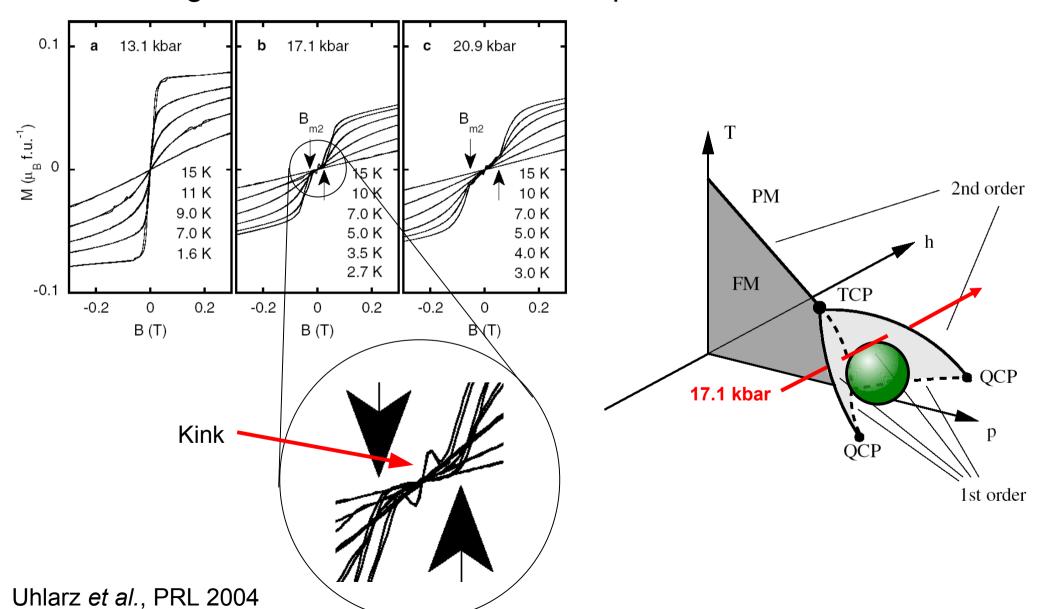
- Survey previous analytical work on itinerant ferromagnetism
- Demonstrate physical origin of first order transition
- Analyse population imbalance in cold atom gas
- Review ongoing cold atoms experiments

Part II: Search for inhomogeneous phase

- Survey experimental motivation
- Perform a gauge transformation to study putative textured phase
- Supplementary Quantum Monte Carlo calculations

ZrZn₂

Kink in magnetisation indicative of novel phase behaviour



Gauge transform analysis

• Gauge transformation $\psi \to e^{\frac{1}{2}i\,q\cdot r\,\sigma_z}\psi$ renders magnetisation $m\sigma_x$ uniform and yields a similar expression for the free energy

$$\begin{split} F &= \sum_{\sigma,\mathbf{k}} \epsilon_{\mathbf{k},\mathbf{q}}^{\sigma} n(\epsilon_{\mathbf{k},\mathbf{q}}^{\sigma}) + g N_{\mathbf{q}}^{\uparrow} N_{\mathbf{q}}^{\downarrow} - \frac{2g^{2}}{V^{3}} \sum_{\mathbf{k}} \int \int \frac{\rho_{\mathbf{q}}^{\uparrow}(\mathbf{k},\epsilon_{\uparrow}) \rho_{\mathbf{q}}^{\downarrow}(-\mathbf{k},\epsilon_{\downarrow})}{\epsilon_{\uparrow} + \epsilon_{\downarrow}} d \epsilon_{\uparrow} d \epsilon_{\downarrow} \\ &+ \frac{2g^{2}}{V^{3}} \sum_{\mathbf{k}_{1,2,3,4}} \frac{n(\epsilon_{\mathbf{k}_{1},\mathbf{q}}^{\uparrow}) n_{\downarrow}(\epsilon_{\mathbf{k}_{2},\mathbf{q}}^{\downarrow})}{\epsilon_{\mathbf{k}_{1},\mathbf{q}}^{\uparrow} + \epsilon_{\mathbf{k}_{2},\mathbf{q}}^{\downarrow} - \epsilon_{\mathbf{k}_{3},\mathbf{q}}^{\uparrow} - \epsilon_{\mathbf{k}_{4},\mathbf{q}}^{\downarrow}} \delta(\mathbf{k}_{1} + \mathbf{k}_{2} - \mathbf{k}_{3} - \mathbf{k}_{3}) \end{split}$$

Modifies the electron dispersion

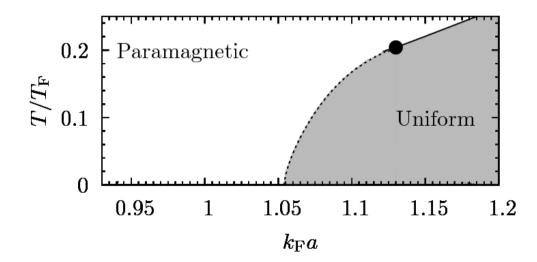
$$\epsilon_{p,q}^{\pm} = \frac{\epsilon_{p+q/2} + \epsilon_{p-q/2}}{2} \pm \frac{\sqrt{(\epsilon_{p+q/2} - \epsilon_{p-q/2})^2 + (2\,gm)^2}}{2}$$

Coefficient of m⁴ has the same form as q²m²

$$\rho^{\sigma}(\mathbf{p}, \epsilon) = \sum_{\mathbf{k}} n(\epsilon_{\mathbf{k}+\mathbf{p}/2}^{\sigma}) \left[1 - n(\epsilon_{\mathbf{k}-\mathbf{p}/2}^{\sigma}) \right] \delta \left(\epsilon - \epsilon_{\mathbf{k}+\mathbf{p}/2}^{\sigma} + \epsilon_{\mathbf{k}-\mathbf{p}/2}^{\sigma} \right)$$

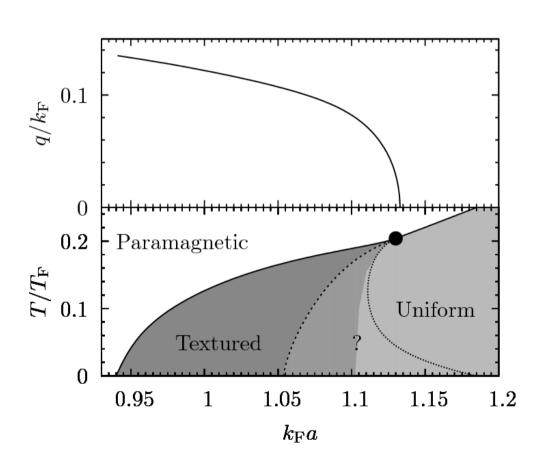
Results

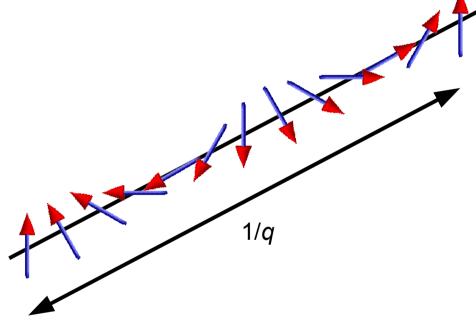
• Uniform ferromagnetic phase with tricritical point



Results

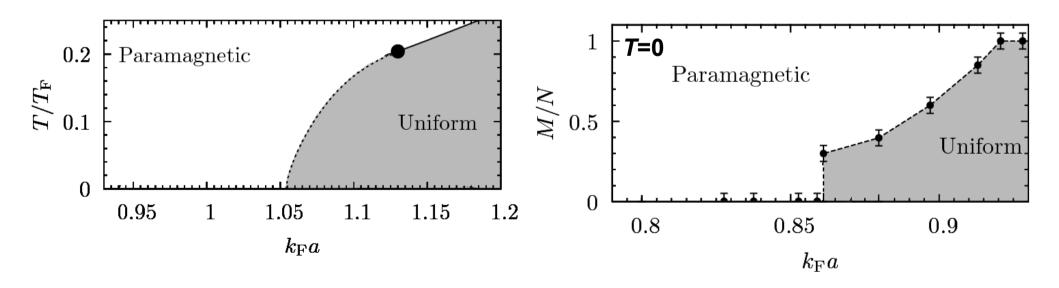
• Textured phase preempted transition with $q=0.1k_F$





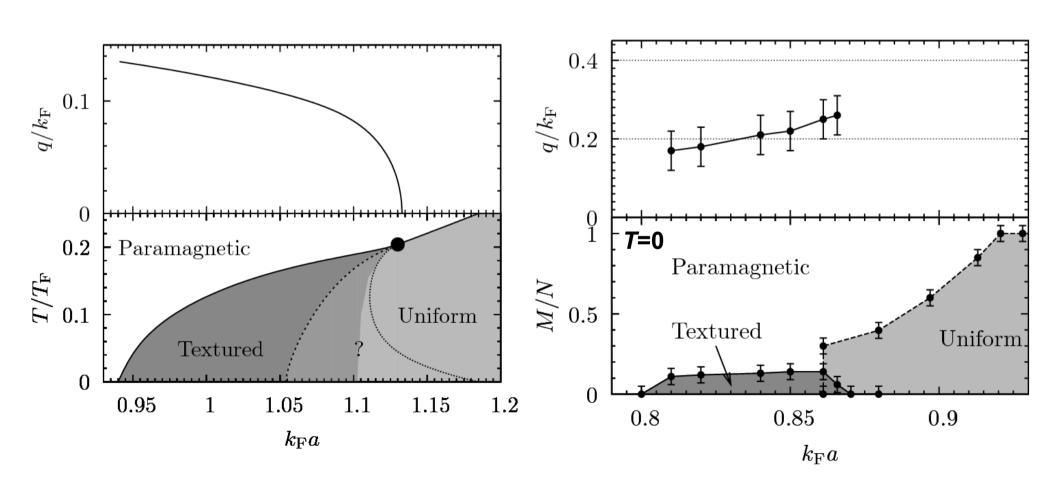
Quantum Monte Carlo: Uniform phase

First order transition into uniform phase



Quantum Monte Carlo: Textured phase

• Textured phase preempted transition with $q=0.2k_F$

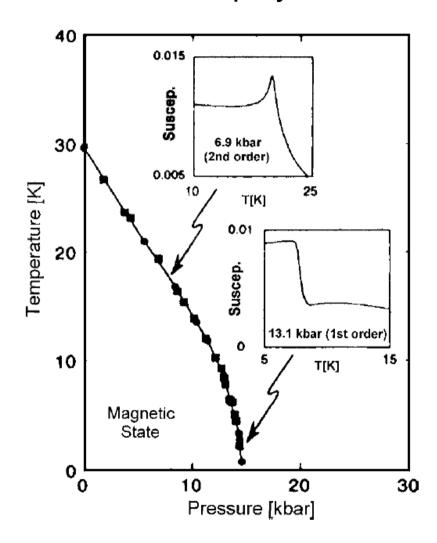


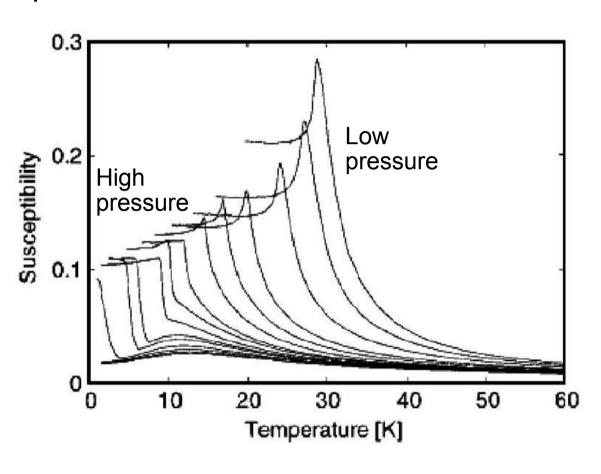
Summary

- Transfer from second to first order ferromagnetic transition at low temperature understood through soft transverse magnetic fluctuations
- Fluctuations responsible for development of nonanalytcities at zero T
- First indications of ferromagnetism in ultracold atom gas
- First order transition accompanied by textured ferromagnetic phase

Breakdown of Stoner criterion — MnSi

MnSi also displays a first order phase transition



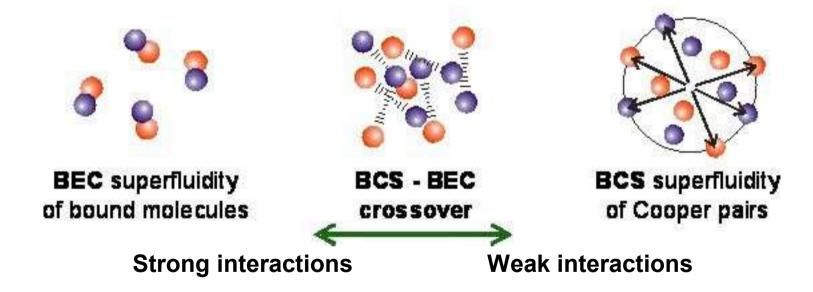


Pfleiderer et al., PRB 1997

Pfleiderer *et al.*, PRB 1997 Vojta *et al.*, 1999 Ann. Phys. 1999

Cold atomic gases — interactions

- A gas of Fermionic atoms is laser and evaporatively cooled to ~10⁻⁸K
- Two-body contact collisions are controlled with a Feshbach resonance tuned by an external magnetic field
- Can tune from bound BEC molecules to weakly bound BCS regime¹



Repulsive interactions allow us to investigate itinerant ferromagnetism

¹Lofus et al. PRL 2002, O'Hara et al. Science 2002, Bourdel et al. PRL 2003

Cold atomic gases — spin

• Two fermionic atom species have a *pseudo-spin*:

⁶ Li	<i>m</i> ⊧=1/2	maps to	spin 1/2
⁶ Li	<i>m</i> ⊧=-1/2	maps to	spin -1/2
⁴⁰ K	<i>m</i> ⊧=9/2	maps to	spin 1/2
⁴⁰ K	<i>m</i> ⊧=-7/2	maps to	spin -1/2

- The up-and down spin particles cannot interchange population imbalance is fixed by Sz
- Ferromagnetism, if favourable, must form in x-y plane

Cold atomic gases — spin

• Two fermionic atom species have a *pseudo-spin*:

40
K m_F =9/2 maps to spin 1/2 40 K m_F =7/2 maps to spin -1/2

 The up-and down spin particles cannot interchange — population imbalance is fixed. Possible spin states are:

$$\begin{array}{lll} |\uparrow\uparrow\rangle & S=1,\ S_z=1 & \text{State not possible as } S_z \text{ has changed} \\ |\downarrow\downarrow\rangle & S=1,\ S_z=-1 & \text{State not possible as } S_z \text{ has changed} \\ (|\uparrow\downarrow\rangle+|\downarrow\uparrow\rangle)/\sqrt{2} & S=1,\ S_z=0 & \text{Magnetic moment in plane} \\ (|\uparrow\downarrow\rangle-|\downarrow\uparrow\rangle)/\sqrt{2} & S=0,\ S_z=0 & \text{Non-magnetic state} \end{array}$$

Ferromagnetism, if favourable, must form in plane

Integrating out electron fluctuations

Partition function:

$$Z = \int D\psi \exp\left(-\int \sum_{\sigma} \bar{\psi}_{\sigma} \underbrace{\left(-i\omega + \epsilon - \mu\right)}_{G_{0}^{-1}} \psi_{\sigma} - g \int \bar{\psi}_{\uparrow} \bar{\psi}_{\downarrow} \psi_{\downarrow} \psi_{\uparrow}\right)$$

1) Decouple in both the density (ρ) and spin (φ) channels

$$Z = \int D\phi D\rho D\psi \exp\left[-g(\phi^2 - \rho^2) - \int \sum_{\alpha,\beta} \bar{\psi}_{\alpha} [(G_0^{-1} - g\rho)\delta_{\alpha\beta} - g\sigma_{\alpha\beta} \cdot \phi]\psi_{\beta}\right]$$

2) Integrate out electrons

$$Z = \int D\phi D\rho \exp\left[-g(\phi^2 - \rho^2) - \operatorname{tr} \ln\left[G_0^{-1} - g\rho - g\sigma \cdot \phi\right]\right]$$

Integrating out magnetisation fluctuations

$$Z = \int D\phi D\rho \exp\left[-g(\phi^2 - \rho^2) - \operatorname{tr} \ln\left[G_0^{-1} - g\rho - g\sigma \cdot \phi\right]\right]$$

3) Expand about uniform magnetisation m

$$Z = \int D\phi D\rho \exp(-g(m^2 + \phi^2 - \rho^2) - \operatorname{tr} \ln\left[\underbrace{G_0^{-1} - gm\sigma_z}_{G^{-1}} - g\rho - g\sigma \cdot \phi\right])$$

4) Expand density and magnetisation fluctuations to second order

$$Z = \int D\phi D\rho \exp\left[-gm^2 - \operatorname{tr}\ln G^{-1} - \operatorname{tr}\left[\rho^2 - \phi^2 + \frac{g}{2}G(\rho - \sigma \cdot \phi)G(\rho - \sigma \cdot \phi)\right]\right]$$

5) Integrate out density and magnetisation fluctuations

$$Z = \exp\left(-gm^2 - \operatorname{tr} \ln G^{-1} - g \operatorname{tr} \Pi_{\uparrow\downarrow} - \frac{g^2}{2} \operatorname{tr} \left[\Pi_{\uparrow\uparrow} \Pi_{\downarrow\downarrow} + \Pi_{\uparrow\downarrow} \Pi_{\downarrow\uparrow}\right]\right)$$
 where $\Pi_{\alpha\beta} = G_{\alpha} G_{\beta}$

Result

Final expression for the free energy

$$F = \sum_{\sigma, \mathbf{k}} \epsilon_{\mathbf{k}} n_{\sigma}(\epsilon_{\mathbf{k}}) + gN_{\uparrow} N_{\downarrow}$$

$$-\frac{2g^{2}}{V^{3}} \sum_{\mathbf{k}_{1,2,3,4}} \frac{n_{\uparrow}(\epsilon_{\mathbf{k}_{1}}) n_{\downarrow}(\epsilon_{\mathbf{k}_{2}}) [n_{\uparrow}(\epsilon_{\mathbf{k}_{3}}) + n_{\downarrow}(\epsilon_{\mathbf{k}_{4}})]}{\epsilon_{\mathbf{k}_{1}} + \epsilon_{\mathbf{k}_{2}} - \epsilon_{\mathbf{k}_{3}} - \epsilon_{\mathbf{k}_{4}}} \delta(\mathbf{k}_{1} + \mathbf{k}_{2} - \mathbf{k}_{3} - \mathbf{k}_{3})$$

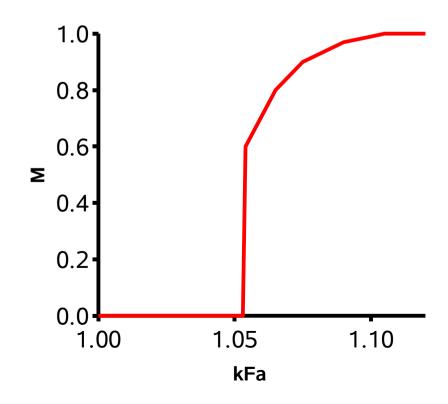
is identical to second order perturbation theory [Abrikosov 1958, Lee & Yang 1960, Mohling, 1961, Duine & MacDonald, 2005]

Ferromagnetic transition

- Considering the soft transverse magnetic fluctuations drives the transition first order
- Recover the following phase diagram

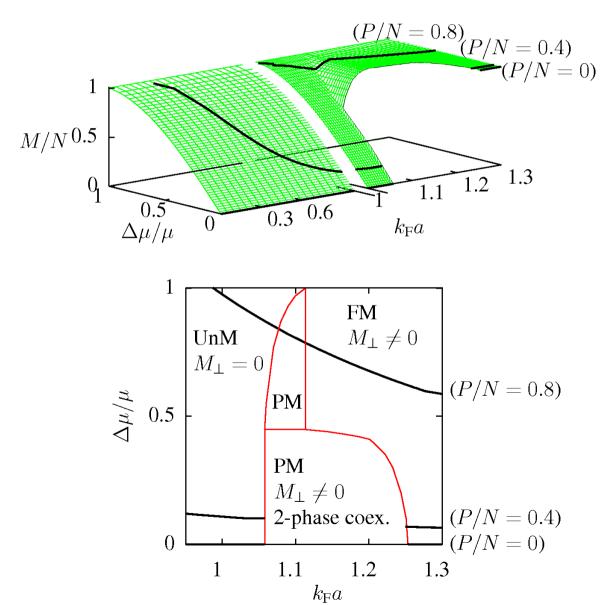


Uhlarz et al., PRL 2004



Grand canonical ensemble

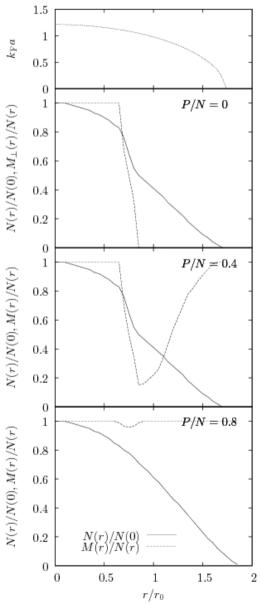
• In the grand canonical ensemble we obtain



Trap behaviour

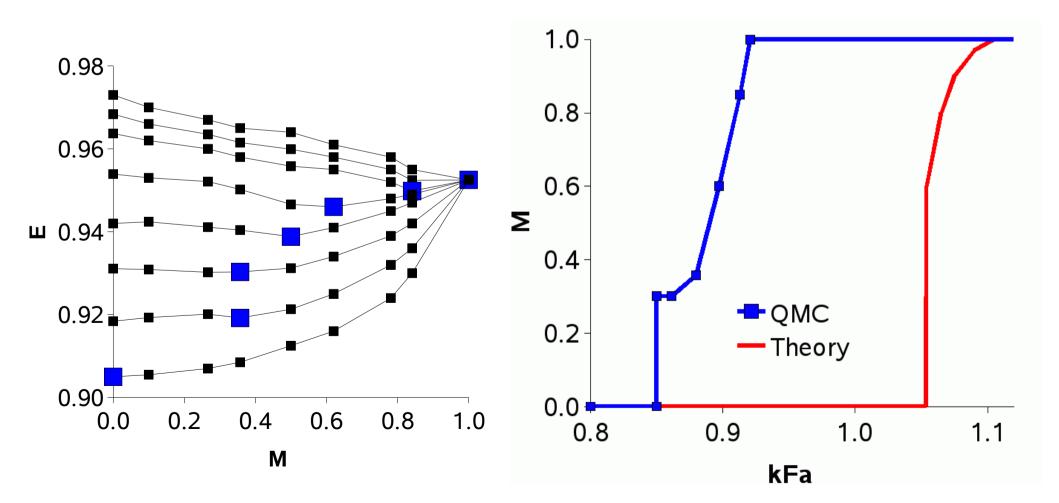
Trap behaviour corresponds to three trajectories in the phase diagram





QMC calculations

- Fluctuation corrections are not exact and higher order terms might destroy the first order phase transition
- Exact (except for the fixed node approximation) Quantum Monte Carlo calculations confirmed a first order phase transition



Consequences of fluctuations

 In a similar way we can expand the energy in magnetisation to second order to account for fluctuations

$$Z = \sum_{\{m(x,t),n(x,t)\}} \exp\left(-E[m,n]/k_B T\right)$$

$$= \sum_{\{\delta m(x,t),\delta n(x,t)\}} \exp\left(\frac{-1}{k_B T} \left(E[\bar{m},\bar{n}] + (\delta m \quad \delta n) \begin{pmatrix} E^{(2,0)} & E^{(1,1)} \\ E^{(1,1)} & E^{(0,2)} \end{pmatrix} \begin{pmatrix} \delta m \\ \delta n \end{pmatrix}\right)\right)$$

• The coupling of fields¹ can drive a transition first order

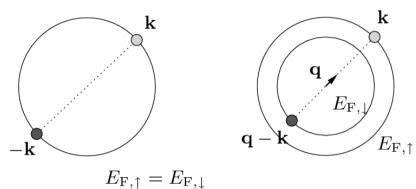
$$r m^{2} + u m^{4} + a \phi^{2} \pm 2a m^{2} \phi = r m^{2} + (u - a) m^{4} + a (\phi \pm m^{2})^{2} = r m^{2} + (u - a) m^{4}$$

¹Rice 1954, Garland & Renard 1966, Larkin & Pikin 1969

FFLO

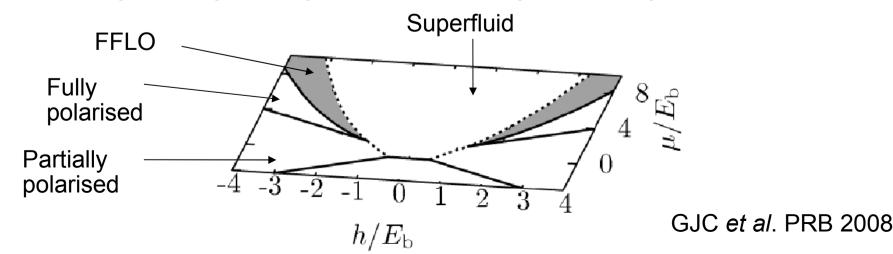
The Fulde-Ferrel-Larkin-Ovchinnikov (FFLO) phase has a modulated

superconducting gap



• A Cooper pair has zero momentum, with unequal Fermi surfaces the Cooper pair carries momentum, causing a modulated superconducting gap parameter Δ

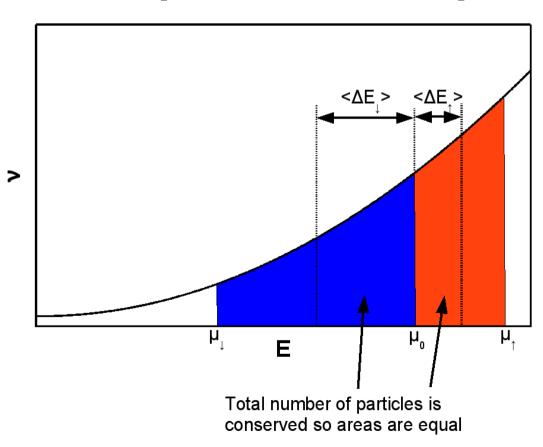
The FFLO phase preempts the normal phase-superfluid transition



Wohlfarth Rhodes criterion

- Do fluctuations influence the transition through the density of states?
- The first order transition could be caused by a peak in the density of states [Sandeman et al. PRL 2003, Pfleiderer et al. PRL 2002]
- If the density of states v(E) changes rapidly with energy then a ferromagnetic transition is favourable when [Binz et al. EPL 2004]

$$v v'' > 3 (v')^2$$



Improved Wohlfarth Rhodes criterion

Accounting for changes in the energy spectrum ε gives criterion

$$\int_0^u \varepsilon^{(0,4)}(w,0) dw + 4\varepsilon^{(0,3)}(u,0) + 6\varepsilon^{(1,2)}(u,0) + 4\varepsilon^{(2,1)}(u,0) + \varepsilon^{(3,0)}(u,0) < 0$$

Overall change in energy spectrum during the transition How energy spectrum changes during transition at the Fermi surface

Wohlfarth Rhodes criterion

Differential of energy spectrum curve

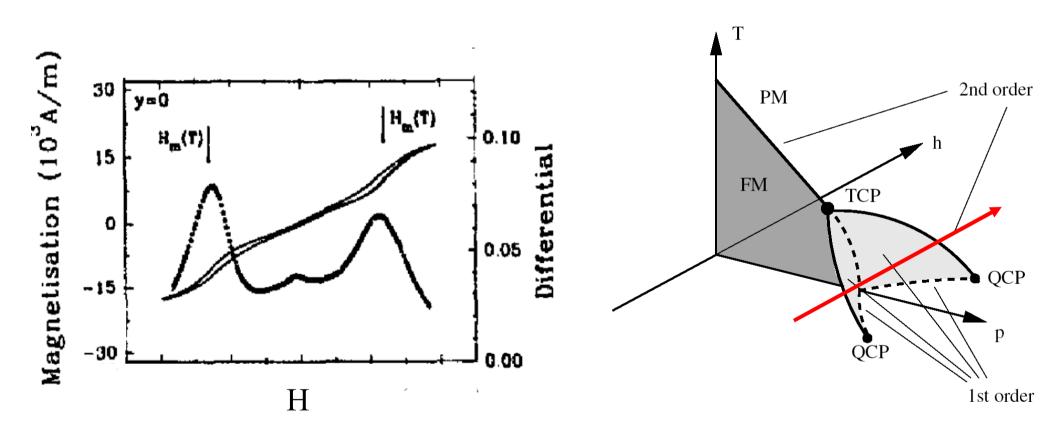
The terms have magnitude

Term	Expansion	-
$\int_0^u \varepsilon^{(0,4)}(w,0) \mathrm{d}w$	$0.0k_{\rm F}a + 0.0086(k_{\rm F}a)^2$	-
$4\varepsilon^{(0,3)}(u,0)$	$0.0k_{\rm F}a - 0.04(k_{\rm F}a)^2 \leftarrow$	
$6\varepsilon^{(1,2)}(u,0)$	$0.024(k_{\rm F}a)^2$	
$4\varepsilon^{(2,1)}(u,0)$	$0.0(k_{ m F}a)^2$	
$\varepsilon^{(3,0)}(u,0)$	$2^{-3/2}/27 - 0.0055(k_{\rm F}a)^2$	

Transition due to changing energy spectrum at the Fermi surface

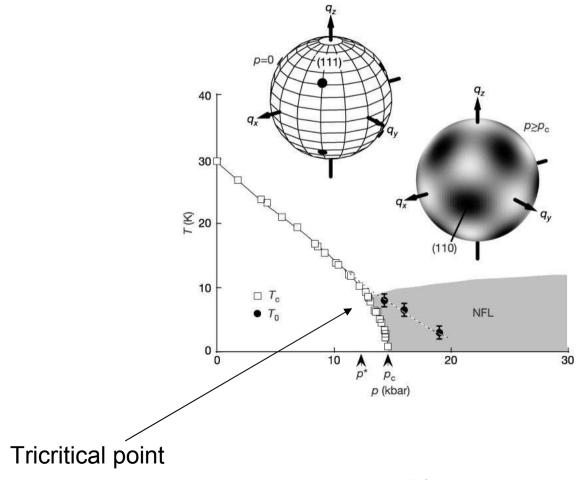
NbFe₂

 NbFe₂ displays antiferromagnetic order where it is expected to be ferromagnetic — could this be a textured ferromagnetic phase?



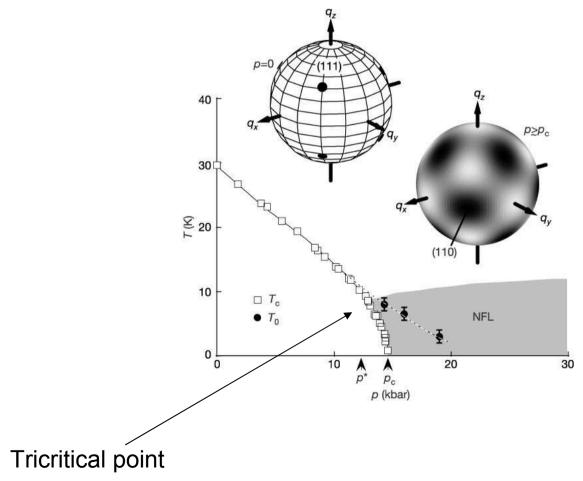
MnSi

 MnSi displays non-Fermi liquid behaviour consistent with a spin state (though in a non-centrosymmetric crystal)



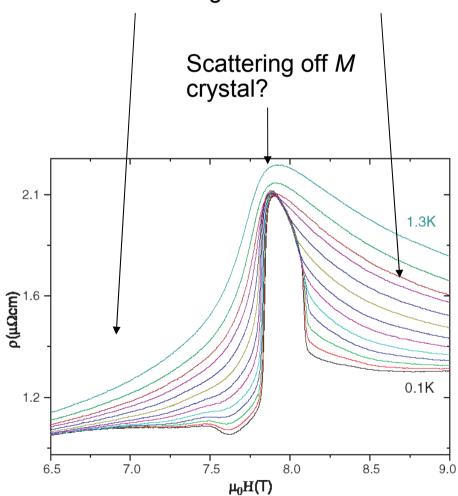
MnSi

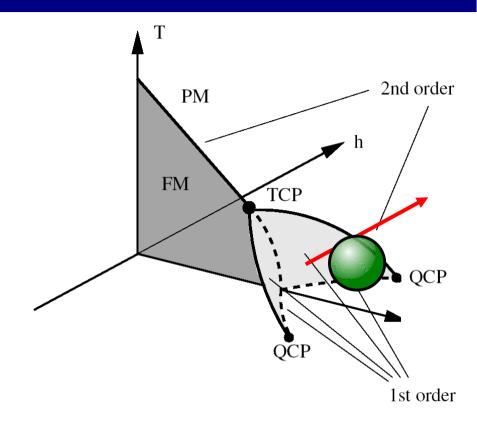
 MnSi displays non-Fermi liquid behaviour consistent with a spin state (though in a non-centrosymmetric crystal)



Sr₃Ru₂O₇

Resistance anomaly

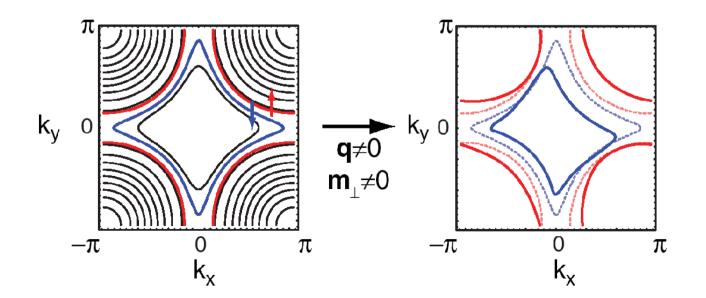




Consistent with a new crystalline phase

Previous analytical work

- Pomeranchuk instability Grigera et al., Science 2005
- Nanoscale charge instabilities Honerkamp, PRB 2005
- Electron nematic Kee & Kim, PRB 2005
- Magnetic mesophase formation Binz et al., PRL 2006
- Previous spin-spiral state studies:
- Rech et al., PRB 2006, Belitz et al., PRB 1997
- Lattice driven reconstruction Berridge et al. PRL 2009



Approach to textured phase

- Homogeneous strategy:
 - 1) Decouple in both the density and spin channels
 - 2) Integrate out electrons
 - 3) Expand about uniform magnetisation
 - 4) Expand magnetisation and density fluctuations to second order
 - 5) Integrate out density and magnetisation fluctuations

- Textured strategy:
 - 1) Gauge transform electrons
 - 2) Decouple in both the density and spin channels
 - 3) Integrate out electrons
 - 4) Expand about **textured** magnetisation **to second order**
 - 5) Expand magnetisation and density fluctuations to second order
 - 6) Integrate out density and magnetisation fluctuations

Gauge transformation

Partition function

$$Z = \int D \psi \exp \left(-\int \sum_{\sigma} \bar{\psi}_{\sigma} (-i \omega + \epsilon - \mu) \psi_{\sigma} - g \int \bar{\psi}_{\uparrow} \bar{\psi}_{\downarrow} \psi_{\downarrow} \psi_{\uparrow} \right)$$

- 1) Gauge transform electrons
- Make the mapping of the fermions $\psi \rightarrow e^{\frac{1}{2}i\,q\cdot r\,\sigma_z}\psi$
- Renders magnetisation $m\sigma_x$ uniform with a spin dependent dispersion

$$Z = \int D\phi \, D\rho \exp \left[-g(\phi^2 - \rho^2) - \operatorname{tr} \ln \left[\begin{vmatrix} i\omega + \epsilon_{p+q/2} - \mu & gm \\ gm & i\omega + \epsilon_{p-q/2} - \mu \end{vmatrix} - g\rho - g\sigma \cdot \phi \right] \right]$$

Diagonalisation gives the energies relative to a spiral

$$\epsilon_{p,q}^{\pm} = \frac{\epsilon_{p+q/2} + \epsilon_{p-q/2}}{2} \pm \frac{\sqrt{(\epsilon_{p+q/2} + \epsilon_{p-q/2})^2 + (2gm)^2}}{2}$$

- which replaces $\varepsilon_p \pm gm$ in the uniform case
- Analysis then proceeds as before

Quantum Monte Carlo

- Ran ab initio Quantum Monte Carlo calculations on the system using the CASINO program
- After a gauge transformation used the non-collinear trial wave function

$$e^{-J(\mathbf{R})} \det \left\{ \left\{ \psi_{\mathbf{k} \in k_{\text{F}^{\uparrow}}}, \overline{\psi}_{\mathbf{k} \in k_{\text{F}^{\downarrow}}} \right\} \right\}$$

$$\psi_{\mathbf{k} \in k_{\text{F}^{\uparrow}}} = \begin{pmatrix} \cos \left[\frac{\theta}{2} \right] \exp \left[i \left(\mathbf{k} - \mathbf{q}/2 \right) \cdot \mathbf{r} \right] \\ \sin \left[\frac{\theta}{2} \right] \exp \left[i \left(\mathbf{k} + \mathbf{q}/2 \right) \cdot \mathbf{r} \right] \end{pmatrix} \quad \overline{\psi}_{\mathbf{k} \in k_{\text{F}^{\uparrow}}} = \begin{pmatrix} -\sin \left[\frac{\theta}{2} \right] \exp \left[-i \left(\mathbf{k} - \mathbf{q}/2 \right) \cdot \mathbf{r} \right] \\ \cos \left[\frac{\theta}{2} \right] \exp \left[-i \left(\mathbf{k} + \mathbf{q}/2 \right) \cdot \mathbf{r} \right] \end{pmatrix}$$

 Single determinant not exact spin eigenstate in finite sized system

$$\langle \hat{\boldsymbol{S}}_{\perp, \text{RMS}} \rangle \approx \langle \hat{\boldsymbol{S}} \rangle / \sqrt{n_{\uparrow} + n_{\downarrow}} \ll \langle \hat{\boldsymbol{S}} \rangle$$

- Planar spin spiral at $\theta = \pi/2$
- Optimisable Jastrow factor *J(R)* accounts for electron correlations